Difference between revisions of "2010 AMC 10B Problems/Problem 13"

(Solution)
(Solution)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
'''Case 1''':  
+
We evaluate this in cases:
  
<math>
+
''Case 1''
2x-|60-2x|=x
+
<math>x<30</math>  
</math>
 
  
<math>
+
When <math>x<30</math> we are going to have <math>60-2x>0</math>.  When <math>x>0</math> we are going to have <math>|x|>0\implies x>0</math> and when <math>-x>0</math> we are going to have <math>|x|>0\implies -x>0</math>.  Therefore we have <math>x=|2x-(60-2x)|</math>
x=|60-2x|
+
<math>x=|2x-60+2x|\implies x=|4x-60|</math>
</math>
 
  
''Case 1a'':
+
''Subcase 1 ''<math>30>x>15</math>
 
<math>
 
x=60-2x
 
</math>
 
  
<math>
+
When <math>30>x>15</math> we are going to have <math>4x-60>0</math>  when this happens, we can express <math>|4x-60|</math> as <math>4x-60</math>
3x=60
+
Therefore we get <math>x=4x-60\implies -3x=-60\implies x=20</math>  We check if <math>x=20</math> is in the domain of the numbers that we put into this subcase, and it is, since <math>30>20>15</math>  Therefore <math>20</math> is one possible solutions. 
</math>
 
  
<math>  
+
'' Subcase 2 '' <math>x<15</math>
x=20
 
</math>
 
  
''Case 1b'':
+
When <math>x<15</math> we are going to have <math>4x-60<0</math>, therefore <math>|4x-60|</math> can be expressed in the form <math>60-4x</math>
 +
We have the equation <math>x=60-4x\implies 5x=60\implies x=12</math>  Since <math>12</math> is less than <math>15</math>, <math>12</math> is another possible solution.
 +
<math>x=|2x-|60-2x||</math>
  
<math>
+
''Case 2 '':  <math>x>30</math>
-x=60-2x
 
</math>
 
  
<math>
+
When <math>x>30</math>, <math>60-2x<0</math>  When <math>x<0</math> we can express this in the form <math>-x</math>  Therefore we have <math>-(60-2x)=2x-60</math>  This makes sure that this is positive, since we just took the negative of a negative to get a positive.  Therefore we have
x=60
+
<math>(x=|2x-(2x-60)|</math>  
</math>
 
  
'''Case 2''':
+
<math>x=|2x-2x+60|</math>
  
<math>
+
<math>x=|60|</math>
2x-|60-2x|=-x
 
</math>
 
  
<math>
+
<math>x=60</math>
3x=|60-2x|
 
</math>
 
  
''Case 2a'':
+
We have now evaluated all the cases, and found the solution to be <math>\{60,12,20\}</math> which have a sum of <math>\boxed{\textbf{(C)}92}</math>
 
 
<math>
 
3x=60-2x
 
</math>
 
 
 
<math>
 
5x=60
 
</math>
 
 
 
<math>
 
x=12
 
</math>
 
 
 
''Case 2b'':
 
 
 
<math>
 
-3x=60-2x
 
</math>
 
 
 
<math>
 
-x=60
 
</math>
 
 
 
<math>
 
x=-60
 
</math>
 
 
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math>
 

Revision as of 14:12, 7 June 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

We evaluate this in cases:

Case 1 $x<30$

When $x<30$ we are going to have $60-2x>0$. When $x>0$ we are going to have $|x|>0\implies x>0$ and when $-x>0$ we are going to have $|x|>0\implies -x>0$. Therefore we have $x=|2x-(60-2x)|$ $x=|2x-60+2x|\implies x=|4x-60|$

Subcase 1 $30>x>15$

When $30>x>15$ we are going to have $4x-60>0$ when this happens, we can express $|4x-60|$ as $4x-60$ Therefore we get $x=4x-60\implies -3x=-60\implies x=20$ We check if $x=20$ is in the domain of the numbers that we put into this subcase, and it is, since $30>20>15$ Therefore $20$ is one possible solutions.

Subcase 2 $x<15$

When $x<15$ we are going to have $4x-60<0$, therefore $|4x-60|$ can be expressed in the form $60-4x$ We have the equation $x=60-4x\implies 5x=60\implies x=12$ Since $12$ is less than $15$, $12$ is another possible solution. $x=|2x-|60-2x||$

Case 2 : $x>30$

When $x>30$, $60-2x<0$ When $x<0$ we can express this in the form $-x$ Therefore we have $-(60-2x)=2x-60$ This makes sure that this is positive, since we just took the negative of a negative to get a positive. Therefore we have $(x=|2x-(2x-60)|$

$x=|2x-2x+60|$

$x=|60|$

$x=60$

We have now evaluated all the cases, and found the solution to be $\{60,12,20\}$ which have a sum of $\boxed{\textbf{(C)}92}$