Difference between revisions of "2011 AMC 10A Problems/Problem 18"

(Created page with '== Solution == Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can c…')
 
(Solution)
Line 1: Line 1:
 +
== Problem 18 ==
 +
 +
Circles <math>A, B,</math> and <math>C</math> each have radius 1. Circles <math>A</math> and <math>B</math> share one point of tangency. Circle <math>C</math> has a point of tangency with the midpoint of <math>\overline{AB}</math>. What is the area inside Circle <math>C</math> but outside circle <math>A</math> and circle <math>B</math> ?
 +
 
== Solution ==
 
== Solution ==
  
 
Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shades area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}</math>.
 
Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shades area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}</math>.

Revision as of 01:45, 16 February 2011

Problem 18

Circles $A, B,$ and $C$ each have radius 1. Circles $A$ and $B$ share one point of tangency. Circle $C$ has a point of tangency with the midpoint of $\overline{AB}$. What is the area inside Circle $C$ but outside circle $A$ and circle $B$ ?

Solution

Draw a rectangle with vertices at the centers of $A$ and $B$ and the intersection of $A, C$ and $B, C$. Then, we can compute the shades area as the area of half of $C$ plus the area of the rectangle minus the area of the two sectors created by $A$ and $B$. This is $\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}$.