2012 AMC 10B Problems/Problem 12

Revision as of 19:42, 25 February 2012 by Juluqu (talk | contribs) (Solution)

Problem

Point B is due east of point A. Point C is due north of point B. The distance between points A and C is $10\sqrt 2$, and $\angle BAC= 45^\circ$. Point D is 20 meters due north of point C. The distance AD is between which two integers?


$\textbf{(A)}\ 30\ \text{and}\ 31 \qquad\textbf{(B)}\ 31\ \text{and}\ 32 \qquad\textbf{(C)}\ 32\ \text{and}\ 33 \qquad\textbf{(D)}\ 33\ \text{and}\ 34 \qquad\textbf{(E)}\ 34\ \text{and}\ 35$

Solution

If point B is due east of point A and point C is due north of point B, $\angle CBA$ is a right angle. And if $\angle BAC = 45^\circ$, $\triangle CBA$ is a 45-45-90 triangle. Thus, the lengths of sides $CB$, $BA$, and $AC$ are in the ratio $1:1:\sqrt 2$, and $CB$ is $10 \sqrt 2 \div \sqrt 2 = 10$.

Invalid username
Login to AoPS