# Difference between revisions of "2013 AMC 10A Problems/Problem 25"

(→Solution) |
|||

Line 3: | Line 3: | ||

<math> \textbf{(A)}\ 49\qquad\textbf{(B)}\ 65\qquad\textbf{(C)}\ 70\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 128 </math> | <math> \textbf{(A)}\ 49\qquad\textbf{(B)}\ 65\qquad\textbf{(C)}\ 70\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 128 </math> | ||

− | |||

− | |||

− | |||

− |

## Revision as of 16:17, 7 February 2013

All 20 diagonals are drawn in a regular octagon. At how many distinct points in the interior of the octagon (not on the boundary) do two or more diagonals intersect?