Difference between revisions of "2013 AMC 12A Problems/Problem 4"

m (Wording)
Line 7: Line 7:
 
The <math>{2^{2012}}</math> cancels, so we get  
 
The <math>{2^{2012}}</math> cancels, so we get  
  
<math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is C
+
<math>\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}</math>, which is <math>C</math>

Revision as of 00:53, 8 February 2013

$\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}}$

We can factor a ${2^{2012}}$ out of the numerator and denominator to obtain

$\frac{2^{2012}*(2^2+1)}{2^{2012}*(2^2-1)}$

The ${2^{2012}}$ cancels, so we get

$\frac{(2^2+1)}{(2^2-1)}=\frac{5}{3}$, which is $C$

Invalid username
Login to AoPS