Difference between revisions of "2014 AMC 12A Problems/Problem 19"

(Solution)
Line 16: Line 16:
  
 
==See Also==
 
==See Also==
{{AMC10 box|year=2014|ab=A|num-b=18|num-a=20}}
+
{{AMC12 box|year=2014|ab=A|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:00, 7 February 2014

Problem

There are exactly $N$ distinct rational numbers $k$ such that $|k|<200$ and \[5x^2+kx+12=0\] has at least one integer solution for $x$. What is $N$?

$\textbf{(A) }6\qquad \textbf{(B) }12\qquad \textbf{(C) }24\qquad \textbf{(D) }48\qquad \textbf{(E) }78\qquad$

Solution

Factor the quadratic into \[\left(5x + \frac{12}{n}\right)\left(x + n\right) = 0\] where $-n$ is our integer solution. Then, \[k = \frac{12}{n} + 5n,\] which takes rational values between $-200$ and $200$ when $|n| \leq 39$, excluding $n = 0$. This leads to an answer of $2 \cdot 39 = \boxed{\textbf{(E) } 78}$.

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png