2014 USAJMO Problems/Problem 2

Revision as of 18:23, 30 April 2014 by Xsrvmy (talk | contribs) (Problem)


Let $\triangle{ABC}$ be a non-equilateral, acute triangle with $\angle A=60^{\circ}$, and let $O$ and $H$ denote the circumcenter and orthocenter of $\triangle{ABC}$, respectively.

(a) Prove that line $OH$ intersects both segments $AB$ and $AC$.

(b) Line $OH$ intersects segments $AB$ and $AC$ at $P$ and $Q$, respectively. Denote by $s$ and $t$ the respective areas of triangle $APQ$ and quadrilateral $BPQC$. Determine the range of possible values for $s/t$.


[asy] import olympiad; unitsize(1inch); pair A,B,C,O,H,P,Q,i1,i2,i3,i4;  //define dots A=3*dir(50); B=(0,0); C=right*2.76481496;  O=circumcenter(A,B,C); H=orthocenter(A,B,C);  i1=2*O-H; i2=2*i1-O; i3=2*H-O; i4=2*i3-H; //These points are for extending PQ. DO NOT DELETE!  P=intersectionpoint(i2--i4,A--B); Q=intersectionpoint(i2--i4,A--C);  //draw dot(P); dot(Q); draw(P--Q); dot(A); dot(B); dot(C); dot(O); dot(H); draw(A--B--C--cycle);  //label label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$P$",P,NW); label("$Q$",Q,NE); label("$O$",O,N); label("$H$",H,N); //change O and H label positions if interfering with other lines to be added  //further editing: ABCPQOH are the dots to be further used. i1,i2,i3,i4 are for drawing assistence and are not to be used [/asy]

Invalid username
Login to AoPS