Difference between revisions of "2015 AMC 10A Problems"

(Problem 2)
(Problem 20)
Line 50: Line 50:
  
 
==Problem 20==
 
==Problem 20==
 +
 +
A rectangle has area <math>A</math> <math>cm^2</math> and perimeter <math>P</math> <math>cm</math>, where <math>A</math> and <math>P</math> are positive integers. Which of the following numbers cannot equal <math>A+P</math>?
 +
 +
<math> \textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108 </math>
  
 
==Problem 21==
 
==Problem 21==

Revision as of 12:24, 4 February 2015

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 2

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}}\ 9\qquad\textbf{(E)}\ 11$ (Error compiling LaTeX. ! Extra }, or forgotten $.)

Solution

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

A rectangle has area $A$ $cm^2$ and perimeter $P$ $cm$, where $A$ and $P$ are positive integers. Which of the following numbers cannot equal $A+P$?

$\textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108$

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS