GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2015 AMC 10A Problems"

(Problem 2)
(Problem 20)
Line 50: Line 50:
  
 
==Problem 20==
 
==Problem 20==
 +
 +
A rectangle has area <math>A</math> <math>cm^2</math> and perimeter <math>P</math> <math>cm</math>, where <math>A</math> and <math>P</math> are positive integers. Which of the following numbers cannot equal <math>A+P</math>?
 +
 +
<math> \textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108 </math>
  
 
==Problem 21==
 
==Problem 21==

Revision as of 13:24, 4 February 2015

Problem 1

What is the value of $(2^0-1+5^2-0)^{-1}\times5?$

$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 2

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}}\ 9\qquad\textbf{(E)}\ 11$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

A rectangle has area $A$ $cm^2$ and perimeter $P$ $cm$, where $A$ and $P$ are positive integers. Which of the following numbers cannot equal $A+P$?

$\textbf{(A) }100\qquad\textbf{(B) }102\qquad\textbf{(C) }104\qquad\textbf{(D) }106\qquad\textbf{(E) }108$

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png