Difference between revisions of "2015 USAMO Problems/Problem 1"
m (Added problem) |
|||
Line 1: | Line 1: | ||
===Problem=== | ===Problem=== | ||
− | + | Solve in integers the equation | |
+ | <cmath> x^2+xy+y^2 = \left(\frac{x+y}{3}+1\right)^3. </cmath> | ||
+ | ===Solution=== | ||
+ | We first notice that both sides must be integers, so <math>\frac{x+y}{3}</math> must be an integer. | ||
+ | |||
+ | We can therefore perform the substitution <math>x+y = 3t</math> where <math>t</math> is an integer. | ||
+ | |||
+ | Then: | ||
+ | |||
+ | <math>(3t)^2 - xy = (t+1)^3</math> | ||
− | === | + | <math>9t^2 + x (x - 3t) = t^3 + 3t^2 + 3t + 1</math> |
− | + | ||
+ | <math>4x^2 - 12xt + 9t^2 = 4t^3 - 15t^2 + 12t + 4</math> | ||
+ | |||
+ | <math>(2x - 3t)^2 = (t - 2)^2(4t + 1)</math> | ||
+ | |||
+ | <math>4t+1</math> is therefore the square of an odd integer and can be replaced with <math>(2n+1)^2 = 4n^2 + 4n +1</math> | ||
+ | |||
+ | By substituting using <math>t = n^2 + n</math> we get: | ||
+ | |||
+ | <math>(2x - 3n^2 - 3n)^2 = [(n^2 + n - 2)(2n+1)]^2</math> | ||
+ | |||
+ | <math>2x - 3n^2 - 3n = \pm (2n^3 + 3n^2 -3n -2)</math> | ||
− | + | <math>x = n^3 + 3n^2 - 1</math> or <math>x = n^3 + 3n - 1</math> | |
− | + | Using substitution we get the solutions: <math>(n^3 + 3n^2 - 1, n^3 + 3n - 1) \cup (n^3 + 3n - 1, n^3 + 3n^2 - 1)</math> |
Revision as of 12:10, 12 May 2015
Problem
Solve in integers the equation
Solution
We first notice that both sides must be integers, so must be an integer.
We can therefore perform the substitution where
is an integer.
Then:
is therefore the square of an odd integer and can be replaced with
By substituting using we get:
or
Using substitution we get the solutions: