2016 AMC 10A Problems

Revision as of 17:45, 3 February 2016 by Warrenwangtennis (talk | contribs) (Problem 13)

Problem 1

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Five friends sat in a movie theater in a row containing 5 seats, numbered 1 to 5 from left to right. (The directions "left" and "right" are from the point of view of the people as they sit in the seats.) During the movie Ada went to the lobby to get some popcorn. When she returned, she found that Bea had moved two seats to the right, Ceci had moved one seat to the left, and Dee and Edie had switched seats, leaving an end seat for Ada. In which seat had Ada been sitting before she got up?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 14

How many ways are there to write 2016 as the sum of twos and threes, ignoring order? (For example, 1008 $\cdot$ 2 + 0 $\cdot$ 3 and 402 $\cdot$ 2 + 404 $\cdot$ 3 are two such ways.)

$\textbf{(A)}\ 236\qquad\textbf{(B)}\ 336\qquad\textbf{(C)}\ 337\qquad\textbf{(D)}\ 403\qquad\textbf{(E)}\ 672$

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Invalid username
Login to AoPS