# 2016 AMC 10B Problems/Problem 19

## Problem

Rectangle $ABCD$ has $AB=5$ and $BC=4$. Point $E$ lies on $\overline{AB}$ so that $EB=1$, point $G$ lies on $\overline{BC}$ so that $CG=1$. and point $F$ lies on $\overline{CD}$ so that $DF=2$. Segments $\overline{AG}$ and $\overline{AC}$ intersect $\overline{EF}$ at $Q$ and $P$, respectively. What is the value of $\frac{PQ}{EF}$?

$[asy]pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("Q",(3.07692307692,2.15384615384),N); label("P",(20/7,12/7),W); label("A",(0,4), NW); label("B",(5,4), NE); label("C",(5,0),SE); label("D",(0,0),SW); label("F",(2,0),S); label("G",(5,1),E); label("E",(4,4),N);[/asy]$

$\textbf{(A)}~\frac{\sqrt{13}}{16} \qquad \textbf{(B)}~\frac{\sqrt{2}}{13} \qquad \textbf{(C)}~\frac{9}{82} \qquad \textbf{(D)}~\frac{10}{91}\qquad \textbf{(E)}~\frac19$

## Solution

$\textbf{(D)}~\frac{10}{91}$

solution by ngeorge