Difference between revisions of "2017 AMC 12B Problems/Problem 24"

(Problem)
(Problem)
Line 2: Line 2:
  
 
Quadrilateral <math>ABCD</math> has right angles at <math>B</math> and <math>C</math>, Triangle <math>ABC</math> ~ Triangle <math>BCD</math>, and <math>AB > BC</math>. There is a point <math>E</math> in the interior of <math>ABCD</math> such that Triangle <math>ABC</math> ~ Triangle <math>CEB</math> and the area of Triangle <math>AED</math> is <math>17</math> times the area of Triangle <math>CEB</math>. What is <math>AB/BC</math>
 
Quadrilateral <math>ABCD</math> has right angles at <math>B</math> and <math>C</math>, Triangle <math>ABC</math> ~ Triangle <math>BCD</math>, and <math>AB > BC</math>. There is a point <math>E</math> in the interior of <math>ABCD</math> such that Triangle <math>ABC</math> ~ Triangle <math>CEB</math> and the area of Triangle <math>AED</math> is <math>17</math> times the area of Triangle <math>CEB</math>. What is <math>AB/BC</math>
<math>\textbf{(A) } 1+\sqrt(2) \qquad \textbf{(B) } 2 + \sqrt(2) \qquad \textbf{(C) } \sqrt(17) \qquad \textbf{(D) } 2 + \sqrt(5) \qquad \textbf{(E) } 1 + 2\sqrt(3)</math>
+
<math>\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } 2 + \sqrt{2} \qquad \textbf{(C) } \sqrt{17} \qquad \textbf{(D) } 2 + \sqrt{5} \qquad \textbf{(E) } 1 + 2\sqrt{3}</math>
  
 
==Solution==
 
==Solution==

Revision as of 22:24, 16 February 2017

Problem

Quadrilateral $ABCD$ has right angles at $B$ and $C$, Triangle $ABC$ ~ Triangle $BCD$, and $AB > BC$. There is a point $E$ in the interior of $ABCD$ such that Triangle $ABC$ ~ Triangle $CEB$ and the area of Triangle $AED$ is $17$ times the area of Triangle $CEB$. What is $AB/BC$ $\textbf{(A) } 1+\sqrt{2} \qquad \textbf{(B) } 2 + \sqrt{2} \qquad \textbf{(C) } \sqrt{17} \qquad \textbf{(D) } 2 + \sqrt{5} \qquad \textbf{(E) } 1 + 2\sqrt{3}$

Solution

Solution by TorrTar

Let $CD=1$, $BC=x$, $AB=x^2$. Note that $AB/BC=x$. The Pythagorean theorem states that $BD=sqrt(x^2+1)$. Since $BCD~ABC~CEB$, the ratios of side lengths must be equal. Since $BC=x$, $CE=x^2/sqrt(x^2+1)$ and $BE=x/sqrt(x^2+1)$. Let Point F be a point on $BC$ such that $EF$ is an altitude of triangle $CEB$. Note that $CEB~CFE~EFB$, so $BF$ and $CF$ can be calculated. Solving for these lengths gives $BF=x/(x^2+1)$ and $CF=x^3/(x^2+1)$. Since $CF$ and $BF$ form altitudes of triangles $CED$ and $BEA$, respectively, the areas of these triangles can be calculated. Additionally, the area of triangle $BEC$ can be calculated, as it is a right triangle. Solving for each of these yields: $Area(BEC)=Area(CED)=Area(BEA)=(x^3)/(2(x^2+1))$ $Area(ABCD)=Area(AED)+Area(DEC)+Area(CEB)+Area(BEA).$ $(AB+CD)(BC)/2= 17*Area(CEB)+ Area(CEB) + Area(CEB) + Area(CEB)$ $(x^3+x)/2=(20x^3)/(2(x^2+1))$ $(x)(x^2+1)=20x^3/(x^2+1)$ $(x^2+1)^2=20x^2$ $x^4-18x^2+1=0$ $x^2=9+4sqrt(5)=4+2(2sqrt(5))+5$ (Minus yields a negative value) $x=2+sqrt(5)$ Thus the answer is D: 2+sqrt(5)

See Also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png