2017 USAMO Problems/Problem 3

Revision as of 18:11, 20 September 2022 by Vvsss (talk | contribs)

Problem

Let $ABC$ be a scalene triangle with circumcircle $\Omega$ and incenter $I.$ Ray $AI$ meets $BC$ at $D$ and $\Omega$ again at $M;$ the circle with diameter $DM$ cuts $\Omega$ again at $K.$ Lines $MK$ and $BC$ meet at $S,$ and $N$ is the midpoint of $IS.$ The circumcircles of $\triangle KID$ and $\triangle MAN$ intersect at points $L_1$ and $L.$ Prove that $\Omega$ passes through the midpoint of either $IL_1$ or $IL.$

Solution

Let $X$ be the point on circle $\Omega$ opposite $M \implies  \angle MAX = 90^\circ, BC \perp XM.$

$\angle XKM = \angle DKM = 90^\circ \implies$ the points $X, D,$ and $K$ are collinear.

Let $D' = BC \cap XM \implies DD' \perp XM \implies S$ is the ortocenter of $\triangle DMX \implies$ the points $X, A,$ and $S$ are collinear.

Let $\omega$ be the circle centered at $S$ with radius $R = \sqrt {SK \cdot SM}.$ We denote $I_\omega$ inversion with respect to $\omega.$

$I_\omega (K) = M \implies$ circle $\Omega = KMCXAB \perp \omega \implies C = I_\omega (B), X = I_\omega (A).$

$I_\omega (K) = M \implies$ circle $KMD \perp \omega \implies D' = I_\omega (D) \in KMD \implies \angle DD'M = 90^\circ \implies AXD'D$ is cyclic $\implies$ the points $X, D',$ and $M$ are collinear.

Let $F \in AM, MF = MI.$ It is well known that $MB = MI = MC \implies \Theta = BICF$ is circle centered at $M. C = I_\omega (B) \implies \Theta \perp \omega.$

Let $I' =  I_\omega (I ) \implies I' \in \Theta \implies \angle II'M =  90^\circ.$

$I' =  I_\omega (I ), X =  I_\omega (A ) \implies AII'X$ is cyclic.

$\angle XI'I = \angle XAI =  90^\circ \implies$ the points $X, I' ,$ and $F$ are collinear.

$I'IDD'$ is cyclic $\implies \angle I'D'M = \angle I'D'C + 90^\circ =  \angle I'ID + 90^\circ, \angle XFM = \angle I'FI = 90^\circ – \angle I'IF = 90^\circ – \angle I'ID  \implies$

$\angle XFM +  \angle I'D'M = 180^\circ \implies I'D'MF$ is cyclic. Therefore point $F$ lies on $I_\omega (IDK).$

In $\triangle FSX$ $FA \perp SX, SI' \perp FX \implies I$ is orthocenter of $\triangle FSX.$

Contact v_Enhance at https://www.facebook.com/v.Enhance.