Difference between revisions of "2018 AIME I Problems/Problem 2"

(Solution)
(Solution)
Line 5: Line 5:
 
==Solution==
 
==Solution==
  
The first curve is a circle with radius <math>5</math> centered at the origin, and the second curve is an ellipse with center <math>(4,0)</math> and end points of <math>(-5,0)</math> and <math>(13,0)</math>. Finding points of intersection, we get <math>(-5,0)</math>, <math>(4,3)</math>, and <math>(4,-3)</math>, forming a triangle with height of <math>9</math> and base of <math>6.</math> So the area of this triangle is <math>9 \cdot 6 \cdot 0.5 =</math>\boxed{027}$.
+
The first curve is a circle with radius <math>5</math> centered at the origin, and the second curve is an ellipse with center <math>(4,0)</math> and end points of <math>(-5,0)</math> and <math>(13,0)</math>. Finding points of intersection, we get <math>(-5,0)</math>, <math>(4,3)</math>, and <math>(4,-3)</math>, forming a triangle with height of <math>9</math> and base of <math>6.</math> So the area of this triangle is <math>9 \cdot 6 \cdot 0.5 = </math>\boxed{027}$.

Revision as of 22:17, 28 February 2018

Problem

What is the area of the polygon whose vertices are the points of intersection of the curves $x^2 + y^2 =25$ and $(x-4)^2 + 9y^2 = 81 ?$

Solution

The first curve is a circle with radius $5$ centered at the origin, and the second curve is an ellipse with center $(4,0)$ and end points of $(-5,0)$ and $(13,0)$. Finding points of intersection, we get $(-5,0)$, $(4,3)$, and $(4,-3)$, forming a triangle with height of $9$ and base of $6.$ So the area of this triangle is $9 \cdot 6 \cdot 0.5 =$\boxed{027}$.

Invalid username
Login to AoPS