Difference between revisions of "2018 AMC 12B Problems/Problem 8"

(Solution 3)
(Replaced content with "2018_AMC_10A_Problems/Problem_12")
(Tag: Replaced)
Line 1: Line 1:
==Problem ==
+
[[REDIRECT|2018_AMC_10A_Problems/Problem_12]]
 
 
Line segment <math>\overline{AB}</math> is a diameter of a circle with <math>AB = 24</math>. Point <math>C</math>, not equal to <math>A</math> or <math>B</math>, lies on the circle. As point <math>C</math> moves around the circle, the centroid (center of mass) of <math>\triangle ABC</math> traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?
 
 
 
<math>\textbf{(A) } 25 \qquad \textbf{(B) } 38  \qquad \textbf{(C) } 50  \qquad \textbf{(D) } 63 \qquad \textbf{(E) } 75  </math>
 
 
 
==Solution 1==
 
For each <math>\triangle ABC,</math> note that the length of one median is <math>OC=12.</math> Let <math>G</math> be the centroid of <math>\triangle ABC.</math> It follows that <math>OG=\frac13 OC=4.</math>
 
 
 
As shown below, <math>\triangle ABC_1</math> and <math>\triangle ABC_2</math> are two shapes of <math>\triangle ABC</math> with centroids <math>G_1</math> and <math>G_2,</math> respectively:
 
<asy>
 
/* Made by MRENTHUSIASM */
 
size(200);
 
pair O, A, B, C1, C2, G1, G2, M1, M2;
 
O = (0,0);
 
A = (-12,0);
 
B = (12,0);
 
C1 = (36/5,48/5);
 
C2 = (-96/17,-180/17);
 
G1 = O + 1/3 * C1;
 
G2 = O + 1/3 * C2;
 
M1 = (4,0);
 
M2 = (-4,0);
 
 
 
draw(Circle(O,12));
 
draw(Circle(O,4),red);
 
 
 
dot("$O$", O, (3/5,-4/5), linewidth(4.5));
 
dot("$A$", A, W, linewidth(4.5));
 
dot("$B$", B, E, linewidth(4.5));
 
dot("$C_1$", C1, dir(C1), linewidth(4.5));
 
dot("$C_2$", C2, dir(C2), linewidth(4.5));
 
dot("$G_1$", G1, 1.5*E, linewidth(4.5));
 
dot("$G_2$", G2, 1.5*W, linewidth(4.5));
 
draw(A--B^^A--C1--B^^A--C2--B);
 
draw(O--C1^^O--C2);
 
dot(M1,red+linewidth(0.8),UnFill);
 
dot(M2,red+linewidth(0.8),UnFill);
 
</asy>
 
Therefore, point <math>G</math> traces out a circle (missing two points) with the center <math>O</math> and the radius <math>\overline{OG},</math> as indicated in red. To the nearest positive integer, the area of the region bounded by the red curve is <math>\pi\cdot OG^2=16\pi\approx\boxed{\textbf{(C) } 50}.</math>
 
 
 
~MRENTHUSIASM
 
 
 
==Solution 2==
 
We assign coordinates. Let <math>A = (-12,0)</math>, <math>B = (12,0)</math>, and <math>C = (x,y)</math> lie on the circle <math>x^2 +y^2 = 12^2</math>. Then, the centroid of <math>\triangle ABC</math> is <math>G = \left(\frac{-12 + 12 + x}{3}, \frac{0 + 0 + y}{3}\right) = \left(\frac x3,\frac y3\right)</math>. Thus, <math>G</math> traces out a circle with a radius <math>\frac13</math> of the radius of the circle that point <math>C</math> travels on. Thus, <math>G</math> traces out a circle of radius <math>\frac{12}{3} = 4</math>, which has area <math>16\pi\approx \boxed{\textbf{(C) } 50}</math>.
 
 
 
==Solution 3==
 
First we can draw a few conclusions from the given information. Firstly we can see clearly that the distance from the centroid to the center of the circle will remain the same no matter <math>C</math> is on the circle. Also we can see that because the two legs of every triangles will always originate on the diameter, using inscribed angle rules, we know that <math>\angle C = \frac{180^\circ}{2} = 90^\circ</math>. Now we know that all triangles <math>ABC</math> will be a right triangle. We also know that the closed curve will simply be a circle with radius equal to the centroid of each triangle. We can now pick any arbitrary triangle, calculate its centroid, and the plug it in to the area formula. Using a <math>45^\circ</math>-<math>45^\circ</math>-<math>90^\circ</math> triangle in conjunction with the properties of a centroid, we can quickly see that the length of the centroid is <math>4</math> now we can plug it in to the area formula where we get <math>16\pi\approx\boxed{\textbf{(C) } 50}</math>.
 
 
 
==Video Solution (HOW TO THINK CRITICALLY!!!)==
 
https://youtu.be/CXOOhQVsOo8
 
 
 
~Education, the Study of Everything
 
 
 
==See Also==
 
{{AMC12 box|year=2018|ab=B|num-a=9|num-b=7}}
 
{{MAA Notice}}
 
 
 
[[Category:Intermediate Geometry Problems]]
 

Revision as of 14:20, 5 June 2023