2018 IMO Problems/Problem 2

Revision as of 02:03, 16 August 2022 by Vvsss (talk | contribs) (Solution)

Find all numbers $n \ge 3$ for which there exists real numbers $a_1, a_2, ..., a_{n+2}$ satisfying $a_{n+1} = a_1, a_{n+2} = a_2$ and \[a_{i}a_{i+1} + 1 = a_{i+2}\] for $i = 1, 2, ..., n.$

Solution

We find at least one series of real numbers for $n = 3,$ for each $n = 3k$ and we prove that if $n = 3k \pm 1,$ then the series does not exist.

Case 1 Let $n = 3.$ We get system of equations \[\begin{cases} a_1 a_2 + 1 = a_3 \\a_2 a_3 + 1 = a_1 \\a_3 a_1 + 1 = a_2 \end{cases}\]

We subtract the first equation from the second and get: \[a_2 (a_3 – a_1) =  (a_1 – a_3).\] So $a_2 = – 1 \implies  a_1 = 2, a_3 =  – 1.$

Case 1' Let $n = 3k, k={1,2,...}.$ The sequence ${ 2, – 1, – 1, ..., 2,  – 1, – 1}$ is the desired sequence.