Difference between revisions of "2020 AIME II Problems/Problem 12"

(Created page with "the problem will be posted on June 6th, 3:00 pm ET")
 
Line 1: Line 1:
the problem will be posted on June 6th, 3:00 pm ET
+
Let <math>m</math> and <math>n</math> be odd integers greater than <math>1.</math> An <math>m\times n</math> rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers <math>1</math> through <math>n</math>, those in the second row are numbered left to right with the integers <math>n + 1</math> through <math>2n</math>, and so on. Square <math>200</math> is in the top row, and square <math>2000</math> is in the bottom row. Find the number of ordered pairs <math>(m,n)</math> of odd integers greater than <math>1</math> with the property that, in the <math>m\times n</math> rectangle, the line through the centers of squares <math>200</math> and <math>2000</math> intersects the interior of square <math>1099</math>

Revision as of 15:58, 7 June 2020

Let $m$ and $n$ be odd integers greater than $1.$ An $m\times n$ rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers $1$ through $n$, those in the second row are numbered left to right with the integers $n + 1$ through $2n$, and so on. Square $200$ is in the top row, and square $2000$ is in the bottom row. Find the number of ordered pairs $(m,n)$ of odd integers greater than $1$ with the property that, in the $m\times n$ rectangle, the line through the centers of squares $200$ and $2000$ intersects the interior of square $1099$