Difference between revisions of "2020 AMC 12A Problems/Problem 10"

(Solution)
(Solution)
Line 9: Line 9:
 
Any logarithm in the form <math>\log_{a^b} c = \frac{1}{b} \log_a c</math>.
 
Any logarithm in the form <math>\log_{a^b} c = \frac{1}{b} \log_a c</math>.
  
so <cmath>\log_2{(\log_{2^4}{n})} = \log_{2^2}{(\log_{2^2}{n})}.</cmath>
+
so <cmath>\log_2{(\log_{2^4}{n})} = \log_{2^2}{(\log_{2^2}{n})}</cmath>
  
 
becomes
 
becomes
  
<cmath>\log_2({\frac{1}{4}\log_{2}{n}}) = \frac{1}{2}\log_2({\frac{1}{2}\log_2{n}}).</cmath>
+
<cmath>\log_2({\frac{1}{4}\log_{2}{n}}) = \frac{1}{2}\log_2({\frac{1}{2}\log_2{n}})</cmath>
  
 
Using <math>\log</math> property of addition, we can expand the parentheses into
 
Using <math>\log</math> property of addition, we can expand the parentheses into
  
<cmath>\log_2{(\frac{1}{4})}+\log_2{(\log_{2}{n}}) = \frac{1}{2}(\log_2{(\frac{1}{2})} +\log_{2}{(\log_2{n})}).</cmath>
+
<cmath>\log_2{(\frac{1}{4})}+\log_2{(\log_{2}{n}}) = \frac{1}{2}(\log_2{(\frac{1}{2})} +\log_{2}{(\log_2{n})})</cmath>
  
 
Expanding the RHS and simplifying the logs without variables, we have
 
Expanding the RHS and simplifying the logs without variables, we have
  
<cmath>-2+\log_2{(\log_{2}{n}}) = -\frac{1}{2}+ \frac{1}{2}(\log_{2}{(\log_2{n})}).</cmath>
+
<cmath>-2+\log_2{(\log_{2}{n}}) = -\frac{1}{2}+ \frac{1}{2}(\log_{2}{(\log_2{n})})</cmath>
 +
 
 +
Subtracting <math>\frac{1}{2}(\log_{2}{(\log_2{n})})</math> from both sides and adding <math>2</math> to both sides gives us
 +
 
 +
<cmath>\frac{1}{2}(\log_{2}{(\log_2{n})}) = \frac{3}{2}</cmath>
 +
 
 +
Multiplying by <math>2</math>, raising the logs to exponents of base <math>2</math> to get rid of the logs and simplifying gives us
 +
 
 +
<cmath>\log_{2}{(\log_2{n})} = 3</cmath>
 +
 
 +
<cmath>\cancel{2^{\log_{2}}{(\log_2{n})}} = 2^3</cmath>

Revision as of 11:42, 1 February 2020

Problem

There is a unique positive integer $n$ such that\[\log_2{(\log_{16}{n})} = \log_4{(\log_4{n})}.\]What is the sum of the digits of $n?$

$\textbf{(A) } 4 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 13$

Solution

Any logarithm in the form $\log_{a^b} c = \frac{1}{b} \log_a c$.

so \[\log_2{(\log_{2^4}{n})} = \log_{2^2}{(\log_{2^2}{n})}\]

becomes

\[\log_2({\frac{1}{4}\log_{2}{n}}) = \frac{1}{2}\log_2({\frac{1}{2}\log_2{n}})\]

Using $\log$ property of addition, we can expand the parentheses into

\[\log_2{(\frac{1}{4})}+\log_2{(\log_{2}{n}}) = \frac{1}{2}(\log_2{(\frac{1}{2})} +\log_{2}{(\log_2{n})})\]

Expanding the RHS and simplifying the logs without variables, we have

\[-2+\log_2{(\log_{2}{n}}) = -\frac{1}{2}+ \frac{1}{2}(\log_{2}{(\log_2{n})})\]

Subtracting $\frac{1}{2}(\log_{2}{(\log_2{n})})$ from both sides and adding $2$ to both sides gives us

\[\frac{1}{2}(\log_{2}{(\log_2{n})}) = \frac{3}{2}\]

Multiplying by $2$, raising the logs to exponents of base $2$ to get rid of the logs and simplifying gives us

\[\log_{2}{(\log_2{n})} = 3\]

\[\cancel{2^{\log_{2}}{(\log_2{n})}} = 2^3\]