2020 AMC 12A Problems/Problem 25

Revision as of 19:25, 1 February 2020 by Giacomorizzo (talk | contribs) (Problem 25)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 25

The number $a=\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers, has the property that the sum of all real numbers $x$ satisfying \[\lfloor x \rfloor \cdot \{x\} = a \cdot x^2\] is $420$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$ and $\{x\}=x- \lfloor x \rfloor$ denotes the fractional part of $x$. What is $p+q$?

$\textbf{(A) } 245 \qquad \textbf{(B) } 593 \qquad \textbf{(C) } 929 \qquad \textbf{(D) } 1331 \qquad \textbf{(E) } 1332$

Solution 1

Invalid username
Login to AoPS