Difference between revisions of "2020 AMC 12B Problems/Problem 24"

(Solution)
(Merged solutions on the other page. Now redirect.)
(Tag: New redirect)
 
(12 intermediate revisions by 6 users not shown)
Line 1: Line 1:
Let <math>D(n)</math> denote the number of ways of writing the positive integer <math>n</math> as a product<cmath>n = f_1\cdot f_2\cdots f_k,</cmath>where <math>k\ge1</math>, the <math>f_i</math> are integers strictly greater than <math>1</math>, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number <math>6</math> can be written as <math>6</math>, <math>2\cdot 3</math>, and <math>3\cdot2</math>, so <math>D(6) = 3</math>. What is <math>D(96)</math>?
+
#REDIRECT [[2020 AMC 10B Problems/Problem 25]]
 
 
<math>\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184</math>
 
 
 
==Solution==
 
Bash.
 
Since <math>96=2^5\times 3</math>, for the number of <math>f_n</math>, we have the following cases:
 
 
 
Case 1: <math>n=1</math>, we have <math>\{f_1\}=\{96\}</math>, only 1 case.
 
 
 
Case 2: <math>n=2</math>, we have <math>\{f_1,f_2\}=\{3,2^5\}, \{6,2^4\},...,\{48,2\}</math>, totally <math>5\cdot 2!=10</math> cases.
 
 
 
Case 3: <math>n=3</math>, we have <math>\{f_1,f_2,f_3\}=\{3,2^3,2^2\},\{3,2^1,2^4\},\{6,2^2,2^2\},\{6,2^3,2^1\}, \{12,2^2,2^1\},\{24,2,2\}</math>, totally <math>\frac{3!}{2!}\cdot 2+4\cdot 3!=30</math> cases.
 
 
 
Case 4: <math>n=4</math>, we have <math>\{f_1,f_2,f_3,f_4\}=\{3,2^2,2^2,2\},\{3,2^3,2,2\},\{6,2^2,2,2\},\{12,2,2,2\}</math>, totally <math>\frac{4!}{2!}\cdot 3+\frac{4!}{3!}=40</math> cases.
 
 
 
Case 5: <math>n=5</math>, we have <math>\{f_1,f_2,f_3,f_4,f_5\}=\{3,2^2,2,2,2\},\{6,2,2,2,2\}</math>, totally <math>\frac{5!}{3!}+\frac{5!}{4!}=25</math> cases.
 
 
 
Case 6: <math>n=6</math>, we have <math>\{f_1,f_2,f_3,f_4,f_5,f_6\}=\{3,2,2,2,2,2\}</math>, totally <math>\frac{6!}{5!}=6</math> cases.
 
 
 
Thus, add all of them together, we have <math>1+10+30+40+25+6=112</math> cases. Put <math>\boxed{A}</math>.
 
 
 
~FANYUCHEN20020715
 
 
 
{{AMC12 box|year=2020|ab=B|num-b=23|num-a=25}}
 
{{MAA Notice}}
 

Latest revision as of 11:12, 9 May 2021