Difference between revisions of "2020 AMC 8 Problems/Problem 12"

Line 1: Line 1:
For positive integers <math>n</math>, the notation <math>n!</math> denotes the product of the integers from <math>n</math> to <math>1</math>. What value of <math>N</math> satisfies the following equation? <cmath>5!\cdot 9!=12\cdot N!</cmath>
+
For a positive integer <math>n</math>, the factorial notation <math>n!</math> represents the product of the integers from <math>n</math> to <math>1</math>. What value of <math>N</math> satisfies the following equation? <cmath>5!\cdot 9!=12\cdot N!</cmath>
  
 
==Solution 1==
 
==Solution 1==

Revision as of 01:01, 18 November 2020

For a positive integer $n$, the factorial notation $n!$ represents the product of the integers from $n$ to $1$. What value of $N$ satisfies the following equation? \[5!\cdot 9!=12\cdot N!\]

Solution 1

Notice that $5!$ = $2*3*4*5,$ and we can combine the numbers to create a larger factorial. To turn $9!$ into $10!,$ we need to multiply $9!$ by $2*5,$ which equals to $10!.$

Therefore, we have

\[10!*12=12*N!.\] We can cancel the $12$'s, since we are multiplying them on both sides of the equation.

We have

\[10!=N!.\] From here, it is obvious that $N=\boxed{10\textbf{(A)}}.$

-iiRishabii