Difference between revisions of "2020 USOMO Problems"

(Redirected page to 2020 USAMO Problems)
(Tag: New redirect)
 
(7 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Day 1==
+
#redirect [[2020 USAMO Problems]]
 
 
===Problem 1===
 
Let <math>ABC</math> be a fixed acute triangle inscribed in a circle <math>\omega</math> with center <math>O</math>. A variable point <math>X</math> is chosen on minor arc <math>AB</math> of <math>\omega</math>, and segments <math>CX</math> and <math>AB</math> meet at <math>D</math>. Denote by <math>O_1</math> and <math>O_2</math> the circumcenters of triangles <math>ADX</math> and <math>BDX</math>, respectively. Determine all points <math>X</math> for which the area of triangle <math>OO_1O_2</math> is minimized.
 
 
 
[[2020 USOMO Problems/Problem 1|Solution]]
 
 
 
===Problem 2===
 
An empty <math>2020 \times 2020 \times 2020</math> cube is given, and a <math>2020 \times 2020</math> grid of square unit cells is drawn on each of its six faces. A beam is a <math>1 \times 1 \times 2020</math> rectangular prism. Several beams are placed inside the cube subject to the following conditions:
 
 
 
<math>\bullet</math> The two <math>1 \times 1</math> faces of each beam coincide with unit cells lying on opposite faces
 
of the cube. (Hence, there are <math>3 \cdot 2020^2</math> possible positions for a beam.)
 
<math>\bullet</math> No two beams have intersecting interiors.
 
<math>\bullet</math> The interiors of each of the four <math>1 \times 2020</math> faces of each beam touch either a face of the cube or the interior of the face of another beam.
 
 
 
What is the smallest positive number of beams that can be placed to satisfy these conditions?
 
 
 
 
 
[[2020 USOMO Problems/Problem 2|Solution]]
 
 
 
===Problem 3===
 
Let <math>p</math> be an odd prime. An integer <math>x</math> is called a <i>quadratic non-residue</i> if
 
<math>p</math> does not divide <math>x - t^2</math> for any integer <math>t</math>.
 
 
 
Denote by <math>A</math> the set of all integers <math>a</math> such that <math>1 \le a < p</math>, and both <math>a</math> and <math>4 - a</math> are
 
quadratic non-residues. Calculate the remainder when the product of the elements of <math>A</math>
 
is divided by <math>p</math>.
 
 
 
[[2020 USOMO Problems/Problem 3|Solution]]
 
 
 
==Day 2==
 

Latest revision as of 17:54, 9 December 2020