2021 AIME I Problems/Problem 11

Revision as of 23:03, 11 March 2021 by Leonard my dude (talk | contribs)

Problem

Let $ABCD$ be a cyclic quadrilateral with $AB=4,BC=5,CD=6,$ and $DA=7$. Let $A_1$ and $C_1$ be the feet of the perpendiculars from $A$ and $C$, respectively, to line $BD,$ and let $B_1$ and $D_1$ be the feet of the perpendiculars from $B$ and $D,$ respectively, to line $AC$. The perimeter of $A_1B_1C_1D_1$ is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Leonard my dude's image.png

Let $O$ be the intersection of $AC$ and $BD$. Let $\theta = \angle AOB$.

Firstly, since $\angle AA_1D = \angle AD_1D = 90^\circ$, we deduce that $AA_1D_1D$ is cyclic. This implies that $\triangle A_1OD_1 \sim \triangle AOD$, with a ratio of $\frac{A_1O}{AO} = \cos \angle A_1OA = \cos \theta$. This means that $\frac{A_1D_1}{AD} = \cos \theta$. Similarly, $\frac{A_1B_1}{AB} = \frac{B_1C_1}{BC} = \frac{C_1D_1}{CD} = \cos \theta$. Hence \[A_1B_1 + B_1C_1 + C_1D_1 + D_1A_1 = (AB + BC + CD + DA)\cos \theta\] It therefore only remains to find $\cos \theta$.

From Ptolemy's theorem, we have that $(BC)(AC) = 4\times6+5\times7 = 59$. From Brahmagupta's Formula, $[ABCD] = \sqrt{(11-4)(11-5)(11-6)(11-7)} = 2\sqrt{210}$. But the area is also $\frac{1}{2}(BC)(AC)\sin\theta = \frac{59}{2}\sin\theta$, so $\sin \theta = \frac{4\sqrt{210}}{59} \implies \cos \theta = \frac{11}{59}$. Then the desired fraction is $(4+5+6+7)\cos\theta = \frac{242}{59}$ for an answer of $\boxed{301}$.

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS