2021 AIME I Problems/Problem 8

Revision as of 17:46, 11 March 2021 by Pcampbell (talk | contribs) (Solution)

Problem

Find the number of integers $c$ such that the equation\[\left||20|x|-x^2|-c\right|=21\]has $12$ distinct real solutions.

Solution

Let $y = |x|.$ Then the equation becomes $\left|\left|20y-y^2\right|-c\right| = 21$, or $\left|y^2-20y\right| = c \pm 21$. Note that since $y = |x|$, $y$ is nonnegative, so we only care about nonnegative solutions in $y$. Notice that each positive solution in $y$ gives two solutions in $x$ ($x = \pm y$), whereas if $y = 0$ is a solution, this only gives one solution in $x$, $x = 0$. Since the total number of solutions in $x$ is even, $y = 0$ must not be a solution. Hence, we require that $\left|y^2-20y\right| = c \pm 21$ has exactly $6$ positive solutions and is not solved by $y = 0.$

If $c < 21$, then $c - 21$ is negative, and therefore cannot be the absolute value of $y^2 - 20y$. This means the equation's only solutions are in $\left|y^2-20y\right| = c + 21$. There is no way for this equation to have $6$ solutions, since the quadratic $y^2-20y$ can only take on each of the two values $\pm(c + 21)$ at most twice, yielding at most $4$ solutions. Hence, $c \ge 21$. $c$ also can't equal $21$, since this would mean $y = 0$ would solve the equation. Hence, $c > 21.$

At this point, the equation $y^2-20y = c \pm 21$ will always have exactly $2$ positive solutions, since $y^2-20y$ takes on each positive value exactly once when $y$ is restricted to positive values (graph it to see this), and $c \pm 21$ are both positive. Therefore, we just need $y^2-20y = -(c \pm 21)$ to have the remaining $4$ solutions exactly. This means the horizontal lines at $-(c \pm 21)$ each intersect the parabola $y^2 - 20y$ in two places. This occurs when the two lines are above the parabola's vertex $(10,-100)$. Hence we have: \[-(c + 21) > -100\] \[c + 21 < 100\] \[c < 79\]

Hence, the integers $c$ satisfying the conditions are those satisfying $21 < c < 79.$ There are $\boxed{057}$ such integers.

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png