

(2 intermediate revisions by 2 users not shown) 
Line 1: 
Line 1: 
−  ==Problem==
 +  #redirect [[2021 AMC 12B Problems/Problem 12]] 
−  Suppose that <math>S</math> is a finite set of positive integers. If the greatest integer in <math>S</math> is removed from <math>S</math>, then the average value (arithmetic mean) of the integers remaining is <math>32</math>. If the least integer is <math>S</math> is [i]also[/i] removed, then the average value of the integers remaining is <math>35</math>. If the greatest integer is then returned to the set, the average value of the integers rises of <math>40</math>. The greatest integer in the original set <math>S</math> is <math>72</math> greater than the least integer in <math>S</math>. What is the average value of all the integers in the set <math>S ?</math>
 
−   
−  <math>\textbf{(A)} ~36.2 \qquad\textbf{(B)} ~36.4 \qquad\textbf{(C)} ~36.6 \qquad\textbf{(D)} ~36.8 \qquad\textbf{(E)} ~37</math>
 
−   
−  ==Solution==
 
−  Let the lowest value be L and the highest G, and let the sum be Z and the amount of numbers n. We have <math>\frac{ZG}{n1}=32</math>, <math>\frac{ZLG}{n2}=35</math>, <math>\frac{ZL}{n1}=40</math>, and <math>G=L+72</math>. Clearing denominators gives <math>ZG=32n32</math>, <math>ZLG=35n70</math>, and <math>ZL=40n40</math>. We use <math>G=L+72</math> to turn the first equation into <math>ZL=32n+40</math>, which gives <math>n=10</math>. Turning the second into <math>Z2L=35n+2</math> we see <math>L=8</math> and <math>Z=368</math> so the average is <math>\frac{Z}{n}=\boxed{(D)36.8}</math> ~aop2014
 
−   
−  ==Solution 2 (much more thorough version of Sol 1)==
 
−  Let <math>S = {x_1, x_2, \dots, x_n}</math> in increasing order. There are <math>n</math> integers in this set.
 
−   
−  The greatest integer in <math>S</math> is <math>x_n</math>, so we need to remove this and get the average as <math>32</math>. There are <math>n1</math> total terms. Thus, <cmath>\frac{x_1+x_2+\dots+x_{n1}}{n1} = 32</cmath><cmath>x_1+x_2+\dots+x_{n1} = 32(n1).</cmath>
 
−   
−  The least integer is <math>x_1.</math> Removing it, we have <cmath>x_2+\dots+x_{n1} = 35(n2).</cmath>
 
−   
−  Finally, adding back <math>x_n</math> we have <cmath>x_2+\dots+x_n = 40(n1).</cmath>
 
−   
−  Since the greatest integer in the original set <math>S</math> is <math>72</math> greater than the least integer in <math>S</math>, we have <cmath>x_n = x_1 + 72.</cmath>
 
−   
−  Substituting this into the third equation, we have <math>x_2 + \dots + x_{n1} + x_1 + 72 = 40(n1).</math> Rearranging, this becomes <math>x_1 + \dots + x_{n1} = 40(n1)  72.</math>
 
−   
−  But the LHS of this equation is the same as the LHS of the first equation! Equating them, we have <math>40(n1)72 = 32(n1)</math>, which means <math>n = 10.</math>
 
−   
−  Let's plug <math>n = 10</math> into all of our previous equations. We have the following system:
 
−  <cmath>x_1+x_2+\dots+x_9 = 288</cmath><cmath>x_2+\dots+x_9 = 280</cmath><cmath>x_2+\dots+x_{10} = 360</cmath>
 
−   
−  We're asked to find the average of <math>S</math>, which is <math>\frac{x_1+x_2+\dots+x_{10}}{10}.</math> Let's focus on the numerator. We can find <math>x_1</math> by subtracting the second equation from the first, to get <math>x_1 = 8.</math> We can also find <math>x_{10}</math> by subtracting the second equation from the third, to get <math>x_{10} = 80.</math>
 
−   
−  We also know <math>x_2+\dots+x_9</math> to equal <math>280</math>. So when we sum up our three values, we get <cmath>x_1 + (x_2 + \dots + x_9) + x_{10} = 8 + 280 + 80 = 368.</cmath>
 
−   
−  Therefore, the sum of the values is <math>368</math>, and finding the average in <math>10</math> terms we have <cmath>\frac{368}{10} = \boxed{(D)\text{ }36.8}.</cmath>
 
−   
−  PureSwag
 
−   
−  {{AMC10 boxyear=2021ab=Bnumb=18numa=20}}
 