Difference between revisions of "2021 AMC 10B Problems/Problem 3"

(Solution 1)
Line 7: Line 7:
  
 
Cross-multiplying and simplifying we get <math>5j=2s.</math> Additionally, since there are <math>28</math> students in the program, <math>j+s = 28.</math> It is now a matter of solving the system of equations <cmath>5j=2s</cmath><cmath>j+s=28,</cmath> and the solution is <math>j = 8, s = 20.</math> Since we want the number of juniors, the answer is <cmath>\boxed{(C) \text{ } 8}.</cmath>
 
Cross-multiplying and simplifying we get <math>5j=2s.</math> Additionally, since there are <math>28</math> students in the program, <math>j+s = 28.</math> It is now a matter of solving the system of equations <cmath>5j=2s</cmath><cmath>j+s=28,</cmath> and the solution is <math>j = 8, s = 20.</math> Since we want the number of juniors, the answer is <cmath>\boxed{(C) \text{ } 8}.</cmath>
 +
 +
-PureSwag

Revision as of 17:34, 11 February 2021

In an after-school program for juniors and seniors, there is a debate team with an equal number of students from each class on the team. Among the $28$ students in the program, $25\%$ of the juniors and $10\%$ of the seniors are on the debate team. How many juniors are in the program?

$\textbf{(A)} ~5 \qquad\textbf{(B)} ~6 \qquad\textbf{(C)} ~8 \qquad\textbf{(D)} ~11 \qquad\textbf{(E)} ~20$

Solution 1

Say there are $j$ juniors and $s$ seniors in the program. Converting percentages to fractions, $\frac{j}{4}$ and $\frac{s}{10}$ are on the debate team, and since an equal number of juniors and seniors are on the debate team, $\frac{j}{4} = \frac{s}{10}.$

Cross-multiplying and simplifying we get $5j=2s.$ Additionally, since there are $28$ students in the program, $j+s = 28.$ It is now a matter of solving the system of equations \[5j=2s\]\[j+s=28,\] and the solution is $j = 8, s = 20.$ Since we want the number of juniors, the answer is \[\boxed{(C) \text{ } 8}.\]

-PureSwag

Invalid username
Login to AoPS