2021 Fall AMC 10B Problems/Problem 15

Revision as of 12:26, 23 November 2021 by Nh14 (talk | contribs) (See Also)

Solution

Note that $\triangle APB \cong \triangle BQC.$ Then, it follows that $\overline{PB} \cong \overline{QC}.$ Thus, $QC = PB = PR + RB = 7 + 6 = 13.$ Define $x$ to be the length of side $CR,$ then $RQ = 13-x.$ Because $\overline{BR}$ is the altitude of the triangle, we can use the property that $QR \cdot RC = BR^2.$ Substituting the given lengths, we have \[(13-x) \cdot x = 36.\] Solving, gives $x = 4$ and $x = 9.$ We eliminate the possibilty of $x=4$ because $RC > QR.$ Thus, the side lengnth of the square, by Pythagorean Theorem, is \[\sqrt{9^2 +6^2} = \sqrt{81+36} = \sqrt{117}.\] Thus, the area of the sqaure is $(\sqrt{117})^2 = 117.$ Thus, the answer is $\boxed{(\textbf{D}.)}.$

~NH14

See Also

2021 Fall AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png