Difference between revisions of "2021 WSMO Team Round Problems/Problem 4"

(Created page with "==Problem== Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have...")
 
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have <math>A_nB_nC_n\sim B_{n-1}A_{n-1}C_{n-1}</math> and <math>A_n=B_{n-1},C_n=C_{n-1}</math>, where <math>A_nB_nC_n</math> is outside of <math>A_{n-1}B_{n-1}C_{n-1}</math>. Find the value of<cmath>\left(\sum_{i=1}^{\infty}[A_iB_iC_i]\right)^2,</cmath>where <math>[A_iB_iC_i]</math> is the area of <math>A_iB_iC_i</math>.
+
Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have <math>A_nB_nC_n\sim B_{n-1}A_{n-1}C_{n-1}</math> and <math>A_n=B_{n-1},C_n=C_{n-1}</math>, where <math>A_nB_nC_n</math> is outside of <math>A_{n-1}B_{n-1}C_{n-1}</math>. Find the value of <cmath>\left(\sum_{i=1}^{\infty}[A_iB_iC_i]\right)^2,</cmath> where <math>[A_iB_iC_i]</math> is the area of <math>A_iB_iC_i</math>.
 +
 
 +
''Proposed by pinkpig''
  
 
==Solution==
 
==Solution==

Latest revision as of 22:16, 15 December 2023

Problem

Consider a triangle $A_1B_1C_1$ satisfying $A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6$. For all successive triangles $A_nB_nC_n$, we have $A_nB_nC_n\sim B_{n-1}A_{n-1}C_{n-1}$ and $A_n=B_{n-1},C_n=C_{n-1}$, where $A_nB_nC_n$ is outside of $A_{n-1}B_{n-1}C_{n-1}$. Find the value of \[\left(\sum_{i=1}^{\infty}[A_iB_iC_i]\right)^2,\] where $[A_iB_iC_i]$ is the area of $A_iB_iC_i$.

Proposed by pinkpig

Solution