Difference between revisions of "2022 AIME I Problems/Problem 15"

Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Let <math>x,</math> <math>y,</math> and <math>z</math> be positive real numbers satisfying the system of equations:
 +
<cmath>\begin{align*}
 +
\sqrt{2x-xy} + \sqrt{2y-xy} &= 1 \\
 +
\sqrt{2y-yz} + \sqrt{2z-yz} &= \sqrt2 \\
 +
\sqrt{2z-zx} + \sqrt{2x-zx} &= \sqrt3.
 +
\end{align*}</cmath>
 +
Then <math>\left[ (1-x)(1-y)(1-z) \right]^2</math> can be written as <math>\frac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n.</math>

Revision as of 20:31, 17 February 2022

Problem

Let $x,$ $y,$ and $z$ be positive real numbers satisfying the system of equations: \begin{align*} \sqrt{2x-xy} + \sqrt{2y-xy} &= 1 \\ \sqrt{2y-yz} + \sqrt{2z-yz} &= \sqrt2 \\ \sqrt{2z-zx} + \sqrt{2x-zx} &= \sqrt3. \end{align*} Then $\left[ (1-x)(1-y)(1-z) \right]^2$ can be written as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$