Difference between revisions of "2022 AMC 10A Problems/Problem 5"

(Solution)
Line 17: Line 17:
 
Therefore, the answer is <cmath>s = \frac{\sqrt2}{\sqrt2 + 1}\cdot\frac{\sqrt2 - 1}{\sqrt2 - 1} = \boxed{\textbf{(C) } 2 - \sqrt{2}}.</cmath>
 
Therefore, the answer is <cmath>s = \frac{\sqrt2}{\sqrt2 + 1}\cdot\frac{\sqrt2 - 1}{\sqrt2 - 1} = \boxed{\textbf{(C) } 2 - \sqrt{2}}.</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
==Video Solution 1 (Quick and Easy)==
 +
https://youtu.be/uXG8xTGwx-8
 +
 +
~Education, the Study of Everything
  
 
== See Also ==
 
== See Also ==

Revision as of 12:33, 12 November 2022

Problem

Square $ABCD$ has side length $1$. Points $P$, $Q$, $R$, and $S$ each lie on a side of $ABCD$ such that $APQCRS$ is an equilateral convex hexagon with side length $s$. What is $s$?

$\textbf{(A) } \frac{\sqrt{2}}{3} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } 2 - \sqrt{2} \qquad \textbf{(D) } 1 - \frac{\sqrt{2}}{4} \qquad \textbf{(E) } \frac{2}{3}$

Solution

Note that $BP=BQ=DR=DS=1-s.$ It follows that $\triangle BPQ$ and $\triangle DRS$ are isosceles right triangles.

In $\triangle BPQ,$ we have $PQ=BP\sqrt2,$ or \begin{align*} s &= (1-s)\sqrt2 \\ s &= \sqrt2 - s\sqrt2 \\ \left(\sqrt2+1\right)s &= \sqrt2 \\ s &= \frac{\sqrt2}{\sqrt2 + 1}. \end{align*} Therefore, the answer is \[s = \frac{\sqrt2}{\sqrt2 + 1}\cdot\frac{\sqrt2 - 1}{\sqrt2 - 1} = \boxed{\textbf{(C) } 2 - \sqrt{2}}.\] ~MRENTHUSIASM

Video Solution 1 (Quick and Easy)

https://youtu.be/uXG8xTGwx-8

~Education, the Study of Everything

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png