Difference between revisions of "2022 AMC 12A Problems/Problem 20"

(Created page with "==Problem== Isosceles trapezoid <math>ABCD</math> has parallel sides <math>\overline{AD}</math> and <math>\overline{BC},</math> with <math>BC < AD</math> and <math>AB = CD.</m...")
 
(Redirected page to 2022 AMC 10A Problems/Problem 23)
(Tag: New redirect)
 
(24 intermediate revisions by 9 users not shown)
Line 1: Line 1:
==Problem==
+
#redirect [[2022 AMC 10A Problems/Problem 23]]
Isosceles trapezoid <math>ABCD</math> has parallel sides <math>\overline{AD}</math> and <math>\overline{BC},</math> with <math>BC < AD</math> and <math>AB = CD.</math> There is a point <math>P</math> in the plane such that <math>PA=1, PB=2, PC=3,</math> and <math>PD=4.</math> What is <math>\tfrac{BC}{AD}?</math>
 
 
 
<math>\textbf{(A) }\frac{1}{4}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{1}{2}\qquad\textbf{(D) }\frac{2}{3}\qquad\textbf{(E) }\frac{3}{4}</math>
 
 
 
==Solution==
 
Consider the reflection <math>P^{\prime}</math> of <math>P</math> over the perpendicular bisector of <math>\overline{BC}</math>, creating two new isosceles trapezoids <math>DAPP^{\prime}</math> and <math>CBPP^{\prime}</math>. Under this reflection, <math>P^{\prime}A=PD=4</math>, <math>P^{\prime}D=PA=1</math>, <math>P^{\prime}C=PB=2</math>, and <math>P^{\prime}B=PC=3</math>. By Ptolmey's theorem <cmath>\begin{align*} PP^{\prime}\cdot AD+1=16 \\ PP^{\prime}\cdot BC+4=9\end{align*}</cmath> Thus <math>PP^{\prime}\cdot AD=15</math> and <math>PP^{\prime}\cdot BC=5</math>; dividing these two equations yields <math>\frac{BC}{AD}=\boxed{\textbf{(B)}~\frac{1}{3}}</math>.
 
 
 
==See also==
 
{{AMC12 box|year=2022|ab=A|num-b=19|num-a=21}}
 
{{AMC10 box|year=2022|ab=A|num-b=22|num-a=24}}
 
 
 
[[Category:Intermediate Geometry Problems]]
 
{{MAA Notice}}
 

Latest revision as of 04:05, 19 November 2022