GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

2022 AMC 12B Problems

Revision as of 18:40, 17 November 2022 by Bxiao31415 (talk | contribs) (Problem 17)
2022 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Define $x\diamond y$ to be $|x-y|$ for all real numbers $x$ and $y$. What is the value of \[(1\diamond(2\diamond3))-((1\diamond2)\diamond3)?\]

$\textbf{(A)}\ -2 \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$

Solution

Problem 2

In rhombus $ABCD$, point $P$ lies on segment $\overline{AD}$ so that $\overline{BP}$ $\perp$ $\overline{AD}$, $AP = 3$, and $PD = 2$. What is the area of $ABCD$? (Note: The figure is not drawn to scale.)

[asy] import olympiad; size(180); real r = 3, s = 5, t = sqrt(r*r+s*s); defaultpen(linewidth(0.6) + fontsize(10)); pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); label("$A$",A,SW); label("$B$", B, NW); label("$C$",C,NE); label("$D$",D,SE); label("$P$",P,S); [/asy]

$\textbf{(A) }3\sqrt 5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }6\sqrt 5 \qquad \textbf{(D) }20\qquad \textbf{(E) }25$

Solution

Problem 3

How many of the first ten numbers of the sequence $121$, $11211$, $1112111$, ... are prime numbers?

$\text{(A) } 0 \qquad \text{(B) }1 \qquad \text{(C) }2 \qquad \text{(D) }3 \qquad \text{(E) }4$

Solution

Problem 4

For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$ have two distinct integer roots?

$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }9 \qquad \textbf{(D) }14 \qquad \textbf{(E) }16$

Solution

Problem 5

The point $(-1, -2)$ is rotated $270^{\circ}$ counterclockwise about the point $(3, 1)$. What are the coordinates of its new position?

$\textbf{(A)}\ (-3, -4) \qquad \textbf{(B)}\ (0,5) \qquad \textbf{(C)}\ (2,-1) \qquad \textbf{(D)}\ (4,3) \qquad \textbf{(E)}\ (6,-3)$

Solution

Problem 6

Consider the following $100$ sets of $10$ elements each: \begin{align*} &\{1,2,3,\cdots,10\}, \\ &\{11,12,13,\cdots,20\},\\ &\{21,22,23,\cdots,30\},\\ &\vdots\\ &\{991,992,993,\cdots,1000\}. \end{align*} How many of these sets contain exactly two multiples of $7$?

$\textbf{(A)}\ 40\qquad\textbf{(B)}\ 42\qquad\textbf{(C)}\ 43\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 50$

Solution

Problem 7

Camila writes down five positive integers. The unique mode of these integers is $2$ greater than their median, and the median is $2$ greater than their arithmetic mean. What is the least possible value for the mode?

$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad\textbf{(E) }13$

Solution

Problem 8

What is the graph of $y^4+1=x^4+2y^2$ in the coordinate plane?

$\textbf{(A)}\ \textbf{Two intersecting parabolas} \qquad \textbf{(B)}\ \textbf{Two nonintersecting parabolas} \qquad \textbf{(C)}\ \textbf{Two intersecting circles} \qquad$

$\textbf{(D)}\ \textbf{A circle and a hyperbola} \qquad \textbf{(E)}\ \textbf{A circle and two parabolas}$

Solution

Problem 9

The sequence $a_0,a_1,a_2,\cdots$ is a strictly increasing arithmetic sequence of positive integers such that \[2^{a_7}=2^{27} \cdot a_7.\]What is the minimum possible value of $a_2$?

$\textbf{(A)}8 \qquad \textbf{(B)}12 \qquad \textbf{(C)}16 \qquad \textbf{(D)}17 \qquad \textbf{(E)}22$

Solution

Problem 10

Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?

$\textbf{(A)}\ 4\sqrt3 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 4\sqrt5 \qquad \textbf{(D)}\ 4\sqrt7 \qquad \textbf{(E)}\ 12$

Solution

Problem 11

Let $f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right)^n + \left( \frac{-1-i\sqrt{3}}{2} \right)^n$, where $i = \sqrt{-1}$. What is $f(2022)$?

$\textbf{(A)}\ -2 \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ \sqrt{3} \qquad \textbf{(E)}\ 2$

Solution

Problem 12

XXX

Solution

Problem 13

XXX

Solution

Problem 14

XXX

Solution

Problem 15

XXX

Solution

Problem 16

XXX

Solution

Problem 17

How many $4 \times 4$ arrays whose entries are 0s and 1s are there such that the row sums (the sum of the entries in each row) are 1, 2, 3, and 4, in some order, and the column sums (the sum of the entries in each column) are also 1, 2, 3, and 4, in some order? For example, the array\[\left[   \begin{array}{cccc}     1 & 1 & 1 & 0 \\     0 & 1 & 1 & 0 \\     1 & 1 & 1 & 1 \\     0 & 1 & 0 & 0 \\   \end{array} \right]\] satisfies the condition.

Solution

Problem 18

XXX

Solution

Problem 19

XXX

Solution

Problem 20

XXX

Solution


Problem 21

XXX

Solution

Problem 22

XXX

Solution

Problem 23

Let $x_0,x_1,x_2,\dotsc$ be a sequence of numbers, where each $x_k$ is either $0$ or $1$. For each positive integer $n$, define \[S_n = \sum_{k=0}^{n-1} x_k 2^k\]

Suppose $7S_n \equiv 1 \pmod{2^n}$ for all $n \geqslant 1$. What is the value of the sum \[x_{2019} + 2x_{2020} + 4x_{2021} + 8x_{2022}\]


$\textbf{(A)}~6\qquad\textbf{(B)}~7\qquad\textbf{(C)}~12\qquad\textbf{(D)}~14\qquad\textbf{(E)}~15\qquad$


Solution

Problem 24

XXX

Solution

Problem 25

XXX

Solution