Difference between revisions of "2022 AMC 12B Problems/Problem 10"

(Solution)
(Solution: ce)
Line 11: Line 11:
 
==Solution==
 
==Solution==
  
Consider triangle <math>BCG</math>. <math>BG = 1</math> and <math>BC = 2</math>. <math>\angle CBG = 120 ^{\circ}</math> because it is an interior angle of a regular hexagon. By the [[Law of Cosines]], we have:  
+
Consider triangle <math>AFG</math>. <math>AG = 1</math> and <math>AF = 2</math>. <math>\angle GAF = 120 ^{\circ}</math> because it is an interior angle of a regular hexagon. By the [[Law of Cosines]], we have:  
  
<cmath> CG^2 = BG^2 + BC^2 - 2 \cdot BG \cdot BC \cdot \cos \angle CBG</cmath>
+
<cmath>\begin{align*}
 +
FG^2 &= AG^2 + AF^2 - 2 \cdot AG \cdot AF \cdot \cos \angle GAF \\
 +
FG^2 &= 1^2 + 2^2 - 2 \cdot 1 \cdot 2 \cdot \cos 120 ^{\circ} \\
 +
FG^2 &= 1^2 + 2^2 - 4 \cdot \left( \frac 12 \right) \\
 +
FG^2 &= 7 \\
 +
FG &= \sqrt 7.
 +
\end{align*}</cmath>
  
<cmath>CG^2 = 1^2 + 2^2 - 2 \cdot 1 \cdot 2 \cdot \cos 120 ^{\circ}</cmath>
+
By [[SAS Congruence]], triangles <math>AFG</math>, <math>BCG</math>, <math>CDH</math>, and <math>EFH</math> are congruent, and by [[CPCTC]], quadrilateral <math>GCHF</math> is a rhombus. Therefore, its perimeter is <math>4 \cdot FG = \boxed{\textbf{(D)} \ 4 \sqrt 7}</math>.
 
 
<cmath>CG = \sqrt 7.</cmath>
 
 
 
By [[SAS Congruence]], triangles <math>BCG</math>, <math>CDH</math>, <math>HEF</math>, and <math>AFG</math> are congruent, and by [[CPCTC]], quadrilateral <math>GCHF</math> is a rhombus. Therefore, its perimeter is <math>4 \cdot CG = \boxed{\textbf{(D)} \ 4 \sqrt 7}</math>.
 
  
 
== See Also ==
 
== See Also ==

Revision as of 19:21, 17 November 2022

Problem

Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?

$\textbf{(A)}\ 4\sqrt3 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 4\sqrt5 \qquad \textbf{(D)}\ 4\sqrt7 \qquad \textbf{(E)}\ 12$

Solution

Consider triangle $AFG$. $AG = 1$ and $AF = 2$. $\angle GAF = 120 ^{\circ}$ because it is an interior angle of a regular hexagon. By the Law of Cosines, we have:

\begin{align*} FG^2 &= AG^2 + AF^2 - 2 \cdot AG \cdot AF \cdot \cos \angle GAF \\ FG^2 &= 1^2 + 2^2 - 2 \cdot 1 \cdot 2 \cdot \cos 120 ^{\circ} \\ FG^2 &= 1^2 + 2^2 - 4 \cdot \left( \frac 12 \right) \\ FG^2 &= 7 \\ FG &= \sqrt 7. \end{align*}

By SAS Congruence, triangles $AFG$, $BCG$, $CDH$, and $EFH$ are congruent, and by CPCTC, quadrilateral $GCHF$ is a rhombus. Therefore, its perimeter is $4 \cdot FG = \boxed{\textbf{(D)} \ 4 \sqrt 7}$.

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png