Difference between revisions of "2022 AMC 12B Problems/Problem 11"

 
(20 intermediate revisions by 8 users not shown)
Line 9: Line 9:
 
\textbf{(E)}\ 2</math>
 
\textbf{(E)}\ 2</math>
  
== Solution 1 (Quick and Easy) ==
+
== Solution 1 ==
 
+
Converting both summands to exponential form,  
We begin by recognizing this form looks similar to the definition of cosine: <cmath>\cos(x)=\frac{e^{ix}+e^{-ix}}{2}.</cmath> We can convert our two terms into exponential form to find <cmath>f(n) = \left( e^{\frac{2\pi i}{3}} \right ) ^n + \left ( e^{-\frac{2\pi i}{3}} \right ) ^n.</cmath> This simplifies nicely: <cmath>e^{\frac{2 \pi i n}{3}} + e^{-\frac{2\pi i n}{3}}=2\cos\left( \frac{2\pi n}{3} \right).</cmath> Thus, <cmath>f(2022)=2\cos \left ( \frac{2\pi (2022) }{3} \right) = 2\cos(1348 \pi) = \boxed{\textbf{(E)}\ 2}.</cmath>
+
<cmath>\begin{align*}
 
+
-1 + i\sqrt{3} &= 2e^{\frac{2\pi i}{3}}, \\
~Indiiiigo
+
-1 - i\sqrt{3} &= 2e^{-\frac{2\pi i}{3}} = 2e^{\frac{4\pi i}{3}}.
 
+
\end{align*}</cmath>
== Solution 2 ==
 
Converting both summands to exponential form, <cmath>-1 + i\sqrt{3} = 2e^{\frac{2\pi i}{3}}</cmath>
 
<cmath>-1 - i\sqrt{3} = 2e^{-\frac{2\pi i}{3}} = 2e^{\frac{4\pi i}{3}}</cmath>
 
 
 
 
Notice that both are scaled copies of the third roots of unity.
 
Notice that both are scaled copies of the third roots of unity.
When we replace the summands with their exponential form, we get
+
When we replace the summands with their exponential form, we get <cmath>f(n) = \left(e^{\frac{2\pi i}{3}}\right)^n + \left(e^{\frac{4\pi i}{3}}\right)^n.</cmath>
<cmath>f(n) = \left(e^{\frac{2\pi i}{3}}\right)^n + \left(e^{\frac{4\pi i}{3}}\right)^n</cmath>
+
When we substitute <math>n = 2022</math>, we get <cmath>f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{2022} + \left(e^{\frac{4\pi i}{3}}\right)^{2022}.</cmath>
When we substitute <math>n = 2022</math>, we get
 
<cmath>f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{2022} + \left(e^{\frac{4\pi i}{3}}\right)^{2022}</cmath>
 
 
We can rewrite <math>2022</math> as <math>3 \cdot 674</math>, how does that help?
 
We can rewrite <math>2022</math> as <math>3 \cdot 674</math>, how does that help?
<cmath>f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{3 \cdot 674} + \left(e^{\frac{4\pi i}{3}}\right)^{3 \cdot 674} = </cmath>
+
<cmath>f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{3 \cdot 674} + \left(e^{\frac{4\pi i}{3}}\right)^{3 \cdot 674} = \left(\left(e^{\frac{2\pi i}{3}}\right)^{3}\right)^{674} + \left(\left(e^{\frac{4\pi i}{3}}\right)^{3}\right)^{674} =
<cmath>\left(\left(e^{\frac{2\pi i}{3}}\right)^{3}\right)^{674} + \left(\left(e^{\frac{4\pi i}{3}}\right)^{3}\right)^{674} = </cmath>
+
1^{674} + 1^{674} = \boxed{\textbf{(E)} \ 2}.</cmath>
<cmath>1^{674} + 1^{674} = \boxed{\textbf{(E)} \ 2}</cmath>
 
 
Since any third root of unity must cube to <math>1</math>.
 
Since any third root of unity must cube to <math>1</math>.
  
~ <math>\color{magenta} zoomanTV</math>
+
~ zoomanTV
  
== Solution 3 (Eisenstein Units) ==
+
== Solution 2 (Eisenstein Units) ==
 
The numbers <math>\frac{-1+i\sqrt{3}}{2}</math> and <math>\frac{-1-i\sqrt{3}}{2}</math> are both <math>\textbf{Eisenstein Units}</math> (along with <math>1</math>), denoted as <math>\omega</math> and <math>\omega^2</math>, respectively. They have the property that when they are cubed, they equal to <math>1</math>. Thus, we can immediately solve:
 
The numbers <math>\frac{-1+i\sqrt{3}}{2}</math> and <math>\frac{-1-i\sqrt{3}}{2}</math> are both <math>\textbf{Eisenstein Units}</math> (along with <math>1</math>), denoted as <math>\omega</math> and <math>\omega^2</math>, respectively. They have the property that when they are cubed, they equal to <math>1</math>. Thus, we can immediately solve:
 +
<cmath>\omega^{2022} + \omega^{2 \cdot 2022} = \omega^{3 \cdot 674} + \omega^{3 \cdot 2 \cdot 674} = 1^{674} + 1^{2 \cdot 674} = \boxed{\textbf{(E)} \ 2}.</cmath>
 +
~mathboy100
  
<cmath>\omega^{2022} + \omega^{2 \cdot 2022}</cmath>
+
== Solution 3 (Quick and Easy) ==
<cmath> = \omega^{3 \cdot 674} + \omega^{3 \cdot 2 \cdot 674}</cmath>
 
<cmath> = 1^{674} + 1^{2 \cdot 674}</cmath>
 
<cmath> = \boxed{\textbf{(E)} \ 2}</cmath>
 
  
~mathboy100
+
We begin by recognizing this form looks similar to the definition of cosine: <cmath>\cos(x)=\frac{e^{ix}+e^{-ix}}{2}.</cmath> We can convert our two terms into exponential form to find <cmath>f(n) = \left( e^{\frac{2\pi i}{3}} \right ) ^n + \left ( e^{-\frac{2\pi i}{3}} \right ) ^n=e^{\frac{2 \pi i n}{3}} + e^{-\frac{2\pi i n}{3}}.</cmath> This simplifies nicely: <cmath>f(n)=2\cos\left( \frac{2\pi n}{3} \right).</cmath> Thus, <cmath>f(2022)=2\cos \left ( \frac{2\pi (2022) }{3} \right) = 2\cos(1348 \pi) = \boxed{\textbf{(E)}\ 2}.</cmath>
 +
 
 +
~Indiiiigo
  
 
== Solution 4 (Third-order Homogeneous Linear Recurrence Relation) ==
 
== Solution 4 (Third-order Homogeneous Linear Recurrence Relation) ==
Line 54: Line 48:
  
 
== Solution 5 (Polynomial + Recursion) ==
 
== Solution 5 (Polynomial + Recursion) ==
let <math>a = \frac{-1+i\sqrt{3}}{2}</math> and <math>b = \frac{-1-i\sqrt{3}}{2}</math>
+
Let <math>a = \frac{-1+i\sqrt{3}}{2}</math> and <math>b = \frac{-1-i\sqrt{3}}{2}</math>.
<math>a + b = -1</math>
+
We know that <math>a + b = -1</math> and <math>a \cdot b = 1</math>.
<math>a * b = 1</math>
+
Therefore, a and b are the roots of <math>x^2 + x + 1 = 0</math>.
Therefore a and b are the roots of <math>x^2 + x + 1 = 0</math>
+
By the factor theorem, <math>a^2 + a + 1 = 0</math> and <math>b^2 + b + 1 = 0</math>.
By factor theorem <math>a^2 + a + 1 = 0</math> and <math>b^2 + b + 1 = 0</math>
+
Multiply the first equation by <math>a^{n-2}</math> and the second equation by <math>b^{n-2}</math>.
Multiply the first equation by <math>a^{n-2}</math> and the second equation by <math>b^{n-2}</math>
 
 
This gives us <math>a^n + a^{n-1} + a^{n-2} = 0</math> and <math>b^n + b^{n-1} + b^{n-2} = 0</math>.
 
This gives us <math>a^n + a^{n-1} + a^{n-2} = 0</math> and <math>b^n + b^{n-1} + b^{n-2} = 0</math>.
Adding both equations together we get <math>a^n + b^n + a^{n-1} + b^{n-1}+ a^{n-2} + b^{n-2} = 0</math>
+
Adding both equations together we get <math>a^n + b^n + a^{n-1} + b^{n-1}+ a^{n-2} + b^{n-2} = 0</math>.
 
This is the same as <math>f(n) + f(n-1) + f(n-2) = 0</math>.
 
This is the same as <math>f(n) + f(n-1) + f(n-2) = 0</math>.
Therefore <math>f(n) = -f(n-1) - f(n-2)</math>
+
Therefore, <math>f(n) = -f(n-1) - f(n-2)</math>.
Plugging in <math>n=1,2,3,4,5,6</math> we get <math>f(n) = -1, -1, 2, -1, -1, 2</math> therefore we know that if <math>n</math> is a multiple of <math>3</math>, then <math>f(n)</math> is <math>2</math>.
+
Plugging in <math>n=1,2,3,4,5</math>, and <math>6</math>, we get <math>f(n) = -1, -1, 2, -1, -1, 2</math>. Therefore we know that if <math>n</math> is a multiple of <math>3</math>, then <math>f(n)</math> is <math>2</math>.
Since <math>2022</math> is a multiple of <math>3</math>, our answers is <math>E) 2.</math>
+
Since <math>2022</math> is a multiple of <math>3</math>, our answers is <math>E) 2</math>.
 
~vpeddi18
 
~vpeddi18
 +
 +
== Solution 6 (SO FAST) ==
 +
Converting the two terms into rectangular form,
 +
 +
<cmath>f(2022)=\left(\cos{\frac{2\pi}{3}}+i\sin{\frac{2\pi}{3}}\right)^{2022}+\left(\cos{\frac{4\pi}{3}}+i\sin{\frac{4\pi}{3}}\right)^{2022}.</cmath>
 +
 +
By DeMoivre's Theorem,
 +
 +
<cmath>f(2022)=\left(\cos{\left(\frac{2\pi}{3}\cdot{2022}\right)}+i\sin{\left(\frac{2\pi}{3}\cdot{2022}\right)}\right)+\left(\cos{\left(\frac{4\pi}{3}\cdot{2022}\right)}+i\sin{\left(\frac{4\pi}{3}\cdot{2022}\right)}\right).</cmath>
 +
 +
Note that <math>\cos{\pi\cdot{k}}=1</math> if <math>k</math> is even and <math>-1</math> if <math>k</math> is odd, and that <math>\sin{\pi\cdot{k}}=0</math> for all integers <math>k</math>.
 +
 +
All arguments are even in the second equation for <math>f(2022)</math>, so the two <math>\cos</math> terms are equal to <math>1</math>, and the two <math>\sin</math> terms are equal to <math>0</math>.
 +
 +
Therefore the answer is <math>1+1=\boxed{\textbf{(E) } 2}.</math>
 +
 +
-Benedict T (countmath1)
 +
 +
==Video Solution by mop 2024==
 +
https://youtu.be/ezGvZgBLe8k&t=70s
 +
 +
~r00tsOfUnity
 +
 +
==Video Solution (Under 2 min!)==
 +
https://youtu.be/ifPUOy_uctM
 +
~<i> Education, the Study of Everything </i>
 +
 +
==Video Solution(1-16)==
 +
https://youtu.be/SCwQ9jUfr0g
 +
 +
~~Hayabusa1
 +
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2022|ab=B|num-b=10|num-a=12}}
 
{{AMC12 box|year=2022|ab=B|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 22:17, 27 October 2023

Problem

Let $f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right)^n + \left( \frac{-1-i\sqrt{3}}{2} \right)^n$, where $i = \sqrt{-1}$. What is $f(2022)$?

$\textbf{(A)}\ -2 \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ \sqrt{3} \qquad \textbf{(E)}\ 2$

Solution 1

Converting both summands to exponential form, \begin{align*} -1 + i\sqrt{3} &= 2e^{\frac{2\pi i}{3}}, \\ -1 - i\sqrt{3} &= 2e^{-\frac{2\pi i}{3}} = 2e^{\frac{4\pi i}{3}}. \end{align*} Notice that both are scaled copies of the third roots of unity. When we replace the summands with their exponential form, we get \[f(n) = \left(e^{\frac{2\pi i}{3}}\right)^n + \left(e^{\frac{4\pi i}{3}}\right)^n.\] When we substitute $n = 2022$, we get \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{2022} + \left(e^{\frac{4\pi i}{3}}\right)^{2022}.\] We can rewrite $2022$ as $3 \cdot 674$, how does that help? \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{3 \cdot 674} + \left(e^{\frac{4\pi i}{3}}\right)^{3 \cdot 674} = \left(\left(e^{\frac{2\pi i}{3}}\right)^{3}\right)^{674} + \left(\left(e^{\frac{4\pi i}{3}}\right)^{3}\right)^{674} = 1^{674} + 1^{674} = \boxed{\textbf{(E)} \ 2}.\] Since any third root of unity must cube to $1$.

~ zoomanTV

Solution 2 (Eisenstein Units)

The numbers $\frac{-1+i\sqrt{3}}{2}$ and $\frac{-1-i\sqrt{3}}{2}$ are both $\textbf{Eisenstein Units}$ (along with $1$), denoted as $\omega$ and $\omega^2$, respectively. They have the property that when they are cubed, they equal to $1$. Thus, we can immediately solve: \[\omega^{2022} + \omega^{2 \cdot 2022} = \omega^{3 \cdot 674} + \omega^{3 \cdot 2 \cdot 674} = 1^{674} + 1^{2 \cdot 674} = \boxed{\textbf{(E)} \ 2}.\] ~mathboy100

Solution 3 (Quick and Easy)

We begin by recognizing this form looks similar to the definition of cosine: \[\cos(x)=\frac{e^{ix}+e^{-ix}}{2}.\] We can convert our two terms into exponential form to find \[f(n) = \left( e^{\frac{2\pi i}{3}} \right ) ^n + \left ( e^{-\frac{2\pi i}{3}} \right ) ^n=e^{\frac{2 \pi i n}{3}} + e^{-\frac{2\pi i n}{3}}.\] This simplifies nicely: \[f(n)=2\cos\left( \frac{2\pi n}{3} \right).\] Thus, \[f(2022)=2\cos \left ( \frac{2\pi (2022) }{3} \right) = 2\cos(1348 \pi) = \boxed{\textbf{(E)}\ 2}.\]

~Indiiiigo

Solution 4 (Third-order Homogeneous Linear Recurrence Relation)

Notice how this looks like the closed form of the Fibonacci sequence except different roots. This is motivation to turn this closed formula into a recurrence relation. The base of the exponents are the roots of the characteristic equation $r^3-1=0$. So we have \begin{align*} a_0&=2\\ a_1&=-1\\ a_2&=-1\\ a_n&=a_{n-3} \end{align*} Every time $n$ is multiple of $3$ as is true when $n=2022$, $a_n= \boxed{\textbf{(E)} \ 2}$ ~lopkiloinm

Solution 5 (Polynomial + Recursion)

Let $a = \frac{-1+i\sqrt{3}}{2}$ and $b = \frac{-1-i\sqrt{3}}{2}$. We know that $a + b = -1$ and $a \cdot b = 1$. Therefore, a and b are the roots of $x^2 + x + 1 = 0$. By the factor theorem, $a^2 + a + 1 = 0$ and $b^2 + b + 1 = 0$. Multiply the first equation by $a^{n-2}$ and the second equation by $b^{n-2}$. This gives us $a^n + a^{n-1} + a^{n-2} = 0$ and $b^n + b^{n-1} + b^{n-2} = 0$. Adding both equations together we get $a^n + b^n + a^{n-1} + b^{n-1}+ a^{n-2} + b^{n-2} = 0$. This is the same as $f(n) + f(n-1) + f(n-2) = 0$. Therefore, $f(n) = -f(n-1) - f(n-2)$. Plugging in $n=1,2,3,4,5$, and $6$, we get $f(n) = -1, -1, 2, -1, -1, 2$. Therefore we know that if $n$ is a multiple of $3$, then $f(n)$ is $2$. Since $2022$ is a multiple of $3$, our answers is $E) 2$. ~vpeddi18

Solution 6 (SO FAST)

Converting the two terms into rectangular form,

\[f(2022)=\left(\cos{\frac{2\pi}{3}}+i\sin{\frac{2\pi}{3}}\right)^{2022}+\left(\cos{\frac{4\pi}{3}}+i\sin{\frac{4\pi}{3}}\right)^{2022}.\]

By DeMoivre's Theorem,

\[f(2022)=\left(\cos{\left(\frac{2\pi}{3}\cdot{2022}\right)}+i\sin{\left(\frac{2\pi}{3}\cdot{2022}\right)}\right)+\left(\cos{\left(\frac{4\pi}{3}\cdot{2022}\right)}+i\sin{\left(\frac{4\pi}{3}\cdot{2022}\right)}\right).\]

Note that $\cos{\pi\cdot{k}}=1$ if $k$ is even and $-1$ if $k$ is odd, and that $\sin{\pi\cdot{k}}=0$ for all integers $k$.

All arguments are even in the second equation for $f(2022)$, so the two $\cos$ terms are equal to $1$, and the two $\sin$ terms are equal to $0$.

Therefore the answer is $1+1=\boxed{\textbf{(E) } 2}.$

-Benedict T (countmath1)

Video Solution by mop 2024

https://youtu.be/ezGvZgBLe8k&t=70s

~r00tsOfUnity

Video Solution (Under 2 min!)

https://youtu.be/ifPUOy_uctM ~ Education, the Study of Everything

Video Solution(1-16)

https://youtu.be/SCwQ9jUfr0g

~~Hayabusa1

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png