Difference between revisions of "2022 AMC 12B Problems/Problem 14"

(Added vector/dot product solution)
(Solution 4)
Line 47: Line 47:
  
 
~mathboy100 (minor LaTeX edits)
 
~mathboy100 (minor LaTeX edits)
 +
 +
==Solution 5==
 +
 +
We use the identity <math>[Area]=\frac{1}{2}ab\sin{C}</math>
 +
 +
The triangle formed by ABC has side AB and BC of <math>5\sqrt{10}</math> and <math>3\sqrt{26}</math> from Pythagorean theorem, with the area being <math>\frac12*8*15</math>
 +
 +
We equate the areas together to get: <cmath>\frac12*8*15=\frac12*5\sqrt{10}*3\sqrt{26}*\sin{B}</cmath>
 +
 +
<cmath>\sin{B}=\frac{8}{\sqrt{260}}</cmath>
 +
From Pythagorean identity, <math>\cos{B}=\frac{14}{\sqrt{260}}</math>
 +
 +
Then we use <math>\tan{B}=\frac{\sin{B}}{\cos{B}}</math>, to obtain <math>\tan{B}=\frac{8}{14}</math> which is <math>\boxed{\textbf{(E)}\ \frac{4}{7}}.</math>
 +
 +
- Sahan Wijetunga
  
 
== See Also ==
 
== See Also ==
 
{{AMC12 box|year=2022|ab=B|num-b=13|num-a=15}}
 
{{AMC12 box|year=2022|ab=B|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:33, 21 December 2022

Problem

The graph of $y=x^2+2x-15$ intersects the $x$-axis at points $A$ and $C$ and the $y$-axis at point $B$. What is $\tan(\angle ABC)$?

$\textbf{(A)}\ \frac{1}{7} \qquad \textbf{(B)}\ \frac{1}{4} \qquad \textbf{(C)}\ \frac{3}{7} \qquad \textbf{(D)}\ \frac{1}{2} \qquad \textbf{(E)}\ \frac{4}{7} \qquad$

Solution 1 (Dot Product)

First, find $A=(-5,0)$, $B=(0,-15)$, and $C=(3,0)$. Create vectors $\overrightarrow{BA}$ and $\overrightarrow{BC}.$ These can be reduced to $\langle -1, 3 \rangle$ and $\langle 1, 5 \rangle$, respectively. Then, we can use the dot product to calculate the cosine of the angle (where $\theta=\angle ABC$) between them:

\begin{align*} \langle -1, 3 \rangle \cdot \langle 1, 5 \rangle = 15-1 &= \sqrt{10}\sqrt{26}\cos(\theta),\\ \implies \cos (\theta) &= \frac{7}{\sqrt{65}}. \end{align*}

Thus, \[\tan(\angle ABC) = \sqrt{\frac{65}{49}-1}= \boxed{\textbf{(E)}\ \frac{4}{7}}.\]

~Indiiiigo

Solution 2

$y=x^2+2x-15$ intersects the $x$-axis at points $(-5, 0)$ and $(3, 0)$. Without loss of generality, let these points be $A$ and $C$ respectively. Also, the graph intersects the y-axis at point $B = (0, -15)$.

Let point $O$ denote the origin $(0, 0)$. Note that triangles $AOB$ and $BOC$ are right.

We have

\[\tan(\angle ABC) = \tan(\angle ABO + \angle OBC) = \frac{\tan(\angle ABO) + \tan(\angle OBC)}{1 - \tan(\angle ABO) \cdot \tan(\angle OBC)} = \frac{\frac15 + \frac13}{1 - \frac1{15}} = \boxed{\textbf{(E)}\ \frac{4}{7}}.\]

Alternatively, we can use the Pythagorean Theorem to find that $AB = 5 \sqrt{10}$ and $BC = 3 \sqrt{26}$ and then use the $A = \frac12 ab \sin \angle C$ area formula for a triangle and the Law of Cosines to find $\tan(\angle ABC)$.

Solution 3

Like above, we set $A$ to $(-5,0)$, $B$ to $(0, -15)$, and $C$ to $(3,0)$, then finding via the Pythagorean Theorem that $AB = 5 \sqrt{10}$ and $BC = 3 \sqrt{26}$. Using the Law of Cosines, we see that \[\cos(\angle ABC) = \frac{AB^2 + BC^2 - AC^2}{2 AB BC} = \frac{250 + 234 - 64}{15 \sqrt{260}} = \frac{7}{\sqrt{65}}.\] Then, we use the identity $\tan^2(x) = \sec^2(x) - 1$ to get \[\tan(\angle ABC) = \sqrt{\frac{65}{49} - 1} = \boxed{\textbf{(E)}\ \frac{4}{7}}.\]

~ jamesl123456

Solution 4

We can reflect the figure, but still have the same angle. This problem is the same as having points $D(0,0)$, $E(3,15)$, and $F(-5,15)$, where we're solving for angle FED. We can use the formula for $\tan(a-b)$ to solve now where $a$ is the $x$-axis to angle $F$ and $b$ is the $x$-axis to angle $E$. $\tan(a) = \textrm{slope of line }DF = -3$ and $\tan(B) = \textrm{slope of line }DE = 5$. Plugging these values into the $\tan(a-b)$ formula, we get $(-3-5)/(1+(-3\cdot 5))$ which is $\boxed{\textbf{(E)}\ \frac{4}{7}}.$

~mathboy100 (minor LaTeX edits)

Solution 5

We use the identity $[Area]=\frac{1}{2}ab\sin{C}$

The triangle formed by ABC has side AB and BC of $5\sqrt{10}$ and $3\sqrt{26}$ from Pythagorean theorem, with the area being $\frac12*8*15$

We equate the areas together to get: \[\frac12*8*15=\frac12*5\sqrt{10}*3\sqrt{26}*\sin{B}\]

\[\sin{B}=\frac{8}{\sqrt{260}}\] From Pythagorean identity, $\cos{B}=\frac{14}{\sqrt{260}}$

Then we use $\tan{B}=\frac{\sin{B}}{\cos{B}}$, to obtain $\tan{B}=\frac{8}{14}$ which is $\boxed{\textbf{(E)}\ \frac{4}{7}}.$

- Sahan Wijetunga

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png