2022 AMC 12B Problems/Problem 19

Revision as of 04:04, 18 November 2022 by A 1111 (talk | contribs) (Problem)

Problem

In $\triangle ABC$ medians $\overline{\rm AD}$ and $\overline{\rm BE}$ intersect at $G$ and $\triangle AGE$ is equilateral. Then $\cos(C)$ can be written as $\frac{m\sqrt{p}}{n}$, where $m$ and $n$ are relatively prime positive integers and $p$ is a positive integer not divisible by the square of any prime. What is $m+n+p$?

$\textbf{(A)}\ 44 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 52 \qquad \textbf{(D)}\ 56 \qquad \textbf{(E)}\ 60 \qquad$

Solution 1: Law of Cosines

Note: can someone add the diagram here please, I don't know how to do that

Let $\overline{AG}=\overline{AE}=\overline{EG}=2x$. Since $E$ is the midpoint of $\overline{AC}$, $\overline{EC}$ must also be $2x$.

Since the centroid splits the median in a $2:1$ ratio, $\overline{GD}$ must be equal to $x$ and $\overline{BG}$ must be equal to $4x$.

Applying Law of Cosines on $\triangle{}ADC$ and $\triangle{}AGB$ yields $\overline{AB}=\sqrt{28}x$ and $\overline{CD}=\overline{BD}=\sqrt{13}x$. Finally, applying Law of Cosines on $\triangle{}ABC$ yields $\cos{C}=\frac{5}{2\sqrt{13}}=\frac{5\sqrt{13}}{26}$. The requested sum is $5+13+26=44$.

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png