Difference between revisions of "2022 SSMO Speed Round Problems/Problem 10"

(Created page with "==Problem== In a circle centered at <math>O</math> with radius <math>7,</math> we have non-intersecting chords <math>AB</math> and <math>DC.</math> <math>O</math> is outisde o...")
 
(Blanked the page)
(Tag: Blanking)
 
Line 1: Line 1:
==Problem==
 
In a circle centered at <math>O</math> with radius <math>7,</math> we have non-intersecting chords <math>AB</math> and <math>DC.</math> <math>O</math> is outisde of quadrilateral <math>ABCD</math> and <math>AB<CD.</math> Let <math>X = AO\cup CD</math> and <math>Y = BO\cup CD.</math> Suppose that <math>XO+YO = 7</math>. If <math>YC-DX=2</math> and <math>XY = 3</math>, then <math>AB = \frac{a\sqrt{b}}{c}</math> for <math>\gcd(a,c) = 1</math> and squareless <math>b.</math> Find <math>a+b+c.</math>
 
  
==Solution==
 
Let <math>CX = x+2, DY=x</math>.
 
 
Then, by power of the point we have that
 
<cmath>(x+2)(x+3) = 49 - YO^2 </cmath>
 
<cmath>(x+5)x = 49 - XO^2</cmath>
 
and subtracting gives that <math>XO^2 - YO^2 = 6</math>.
 
Since we know that <math>XO + YO = 7</math>, dividing gives
 
that <math>XO - YO = \frac{6}{7}</math> so <math>XO = \frac{55}{14}</math>
 
and <math>YO = \frac{43}{14}</math>.
 
 
Then, by law of cosines, it follows that
 
<cmath>
 
    OY^2 + OX^2 - 2 \cdot OX \cdot OY \cos\angle YOX = YX^2
 
</cmath>
 
which implies that <math>\cos\angle YOX = \frac{311}{473}</math>.
 
 
Then, <math>AB^2 = OA^2 + OB^2 - 2 \cdot OA \cdot OB \cos\angle YOX</math>
 
which implies that <math>AB = \frac{126 \sqrt{473}}{473}</math> so the
 
answer is then <math>\boxed{1072}</math>.
 

Latest revision as of 14:18, 3 July 2023