Difference between revisions of "2022 SSMO Speed Round Problems/Problem 8"

(Created page with "==Problem== Circle <math>\omega</math> has chord <math>AB</math> of length <math>18</math>. Point <math>X</math> lies on chord <math>AB</math> such that <math>AX = 4.</math> C...")
 
(Blanked the page)
(Tag: Blanking)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Problem==
 
Circle <math>\omega</math> has chord <math>AB</math> of length <math>18</math>. Point <math>X</math> lies on chord <math>AB</math> such that <math>AX = 4.</math> Circle <math>\omega_1</math> with radius <math>r_1</math> and <math>\omega_2</math> with radius <math>r_2</math> lie on two different sides of <math>AB.</math> Both <math>\omega_1</math> and <math>\omega_2</math> are tangent to <math>AB</math> at <math>X</math> and <math>\omega.</math> If the sum of the maximum and minimum values of <math>r_1r_2</math> is <math>\frac{m}{n},</math> find <math>m+n</math>.
 
  
==Solution==
 
Let <math>r</math> be the radius of <math>\omega</math> and let <math>C</math> be the midpoint of <math>AB</math> and let <math>OC = x.</math> Note that <math>r^2 - x^2 = 81</math>. WLOG assume that <math>r_2\geq r_1.</math>
 
 
Since <math>AX = 4</math> and <math>AB = 18,</math> we have <math>XC = \frac{AB}{2}-AX = 5.</math>
 
 
By the Pythagorean Theorem, we have
 
\begin{align*}
 
(O_1X+CO)^2+(XC)^2 &= (OO_1)^2 \\
 
(O_2X-CO)^2+(XC)^2 &= (OO_2)^2.
 
\end{align*}
 
which is the same as
 
\begin{align*}
 
(r_1+x)^2+25 = (r-r_1)^2 \\
 
(r_2-x)^2+25 =(r-r_2)^2.
 
\end{align*}
 
 
Solving for <math>r_1</math> and <math>r_2,</math> we have that
 
\begin{align*}
 
r_1 &= \frac{r^2-x^2-25}{2(r+x)} \\
 
    r_2 &= \frac{r^2-x^2-25}{2(r-x)}.
 
\end{align*}
 
Thus,
 
<cmath>
 
r_1r_2 = \frac{((r^2-x^2)-5^2)^2}{4(r^2-x^2)} = \frac{784}{81},
 
</cmath>
 
meaning that the minimum and maximum value of <math>r_1r_2</math> are both <math>\frac{784}{81}</math> so the answer is <math>\boxed{1649}.</math>
 
 
\begin{center}
 
\begin{asy}
 
    size(7cm);
 
    point a, b, c, x, o, t, o1, o2;
 
    a = (0,0);
 
    b = (18,0);
 
    c = (9,0);
 
    x = (4,0);
 
    o = (9, -3);
 
 
    circle cir = circle(o, abs(a-o));
 
    t = intersectionpoints(cir, line(x,o))[1];
 
 
    point[] o1o2 = intersectionpoints(ellipse(x, o, (x+t)/2), line(x, x+(0,1)));
 
 
    o1 = o1o2[0];
 
    o2 = o1o2[1];
 
 
    draw(o1--o2, red);
 
    draw(a--b, blue);
 
    draw(c--o, blue);
 
   
 
    filldraw(cir, opacity(0.2)+lightcyan, blue);
 
    // draw(ellipse(x, o, (x+t)/2));
 
 
    filldraw(circle(o1, abs(o1-x)), opacity(0.2)+palered, lightred);
 
    filldraw(circle(o2, abs(o2-x)), opacity(0.2)+palered, lightred);
 
 
    dot("<math>A</math>", a, dir(145));
 
    dot("<math>B</math>", b, dir(30));
 
    dot("<math>C</math>", c, dir(90));
 
    dot("<math>X</math>", x, dir(60));
 
    dot("<math>O</math>", o, dir(45));
 
    dot("<math>O_1</math>", o1);
 
    dot("<math>O_2</math>", o2);
 
\end{asy}
 
\end{center}
 

Latest revision as of 14:18, 3 July 2023