2023 AIME II Problems/Problem 3

Revision as of 00:57, 17 February 2023 by Superprotoman (talk | contribs) (Solution 4: added parenthesis)

Problem

Let $\triangle ABC$ be an isosceles triangle with $\angle A = 90^\circ.$ There exists a point $P$ inside $\triangle ABC$ such that $\angle PAB = \angle PBC = \angle PCA$ and $AP = 10.$ Find the area of $\triangle ABC.$

Diagram

[asy] /* Made by MRENTHUSIASM */  size(200); pair A, B, C, P;  A = origin; B = (0,10*sqrt(5)); C = (10*sqrt(5),0); P = intersectionpoints(Circle(A,10),Circle(C,20))[0];  dot("$A$",A,1.5*SW,linewidth(4)); dot("$B$",B,1.5*NW,linewidth(4)); dot("$C$",C,1.5*SE,linewidth(4)); dot("$P$",P,1.5*NE,linewidth(4));  markscalefactor=0.125; draw(rightanglemark(B,A,C,10),red); draw(anglemark(P,A,B,25),red); draw(anglemark(P,B,C,25),red); draw(anglemark(P,C,A,25),red); add(pathticks(anglemark(P,A,B,25), n = 1, r = 0.1, s = 10, red)); add(pathticks(anglemark(P,B,C,25), n = 1, r = 0.1, s = 10, red)); add(pathticks(anglemark(P,C,A,25), n = 1, r = 0.1, s = 10, red));  draw(A--B--C--cycle^^P--A^^P--B^^P--C); label("$10$",midpoint(A--P),dir(-30),red); [/asy] ~MRENTHUSIASM

Solution 1

Since the triangle is a right isosceles triangle, $\angle B = \angle C = 45^\circ$.

Let the common angle be $\theta$. Note that $\angle PAC = 90^\circ-\theta$, thus $\angle APC = 90^\circ$. From there, we know that $AC = \frac{10}{\sin\theta}$.

Note that $\angle ABP = 45^\circ-\theta$, so from law of sines we have \[\frac{10}{\sin\theta \cdot \frac{\sqrt{2}}{2}}=\frac{10}{\sin(45^\circ-\theta)}.\] Dividing by $10$ and multiplying across yields \[\sqrt{2}\sin(45^\circ-\theta)=\sin\theta.\] From here use the sine subtraction formula, and solve for $\sin\theta$: \begin{align*} \cos\theta-\sin\theta&=\sin\theta \\ 2\sin\theta&=\cos\theta \\ 4\sin^2\theta&=\cos^2\theta \\ 4\sin^2\theta&=1-\sin^2\theta \\ 5\sin^2\theta&=1 \\ \sin\theta&=\frac{1}{\sqrt{5}}. \end{align*} Substitute this to find that $AC=10\sqrt{5}$, thus the area is $\frac{(10\sqrt{5})^2}{2}=\boxed{250}$.

~SAHANWIJETUNGA

Solution 2

Since the triangle is a right isosceles triangle, $\angle B = \angle C = 45^\circ$.

Do some angle chasing yielding:

  • $\angle APB = \angle BPC = 135^\circ$
  • $\angle APC=90^\circ$

We have $AC=\frac{10}{\sin\theta}$ since $\triangle APC$ is a right triangle. Since $\triangle ABC$ is a $45^\circ$-$45^\circ$-$90^\circ$ triangle, $AB=\frac{10}{\sin\theta}$, and $BC=\frac{10\sqrt{2}}{\sin\theta}$.

Note that $\triangle APB \sim \triangle BPC$ by a factor of $\sqrt{2}$. Thus, $BP = 10\sqrt{2}$, and $PC = 20$.

From Pythagorean theorem, $AC=10\sqrt{5}$ so the area of $\triangle ABC$ is $\frac{(10\sqrt{5})^2}{2}=\boxed{250}$.

~SAHANWIJETUNGA

Solution 3

Let $\theta=m\angle PAB = m\angle PBC = m\angle PCA.$ From that, we can get $m\angle PAC=90^{\circ}-\theta$ and $m\angle PBA = m\angle PCB = 45^{\circ}-\theta.$ From that, we can also know that $\triangle APC$ is a right triangle.

With this information, we can deduce that $\triangle PAB\sim\triangle PBC.$ Due to properties of $45-45-90$ triangles, we know that $BC = \sqrt{2}\cdot AB.$ This means that $\triangle PBC$ is $\triangle PAB$ scaled by a factor of $\sqrt{2}.$ Using similar triangles ratios that $\frac{PB}{PA}=\frac{PC}{PB}=\frac{BC}{AB}=\sqrt{2},$ we first find that $PB = 10\sqrt{2},$ then that $PC=20.$

Now using the Pythagorean Theorem on right $\triangle APC,$ we find that the length of the legs of this triangle are $10\sqrt{5}.$ Using that to solve for the area, we get our answer: \[[ABC]=\frac{(10\sqrt{5})^2}{2}=\frac{500}{2}=\boxed{250}.\]

~s214425

Solution 4

Since the triangle is a right isosceles triangle, $\angle B = \angle C = 45^\circ$.

Notice that in triangle $PBC$, $\angle PBC + 45-\angle PCA = 45^\circ$, so $\angle BPC = 135^\circ$. Similar logic shows $\angle APC = 135^\circ$.

Now, we see that $\triangle APB \sim \triangle BPC$ with ratio $1:\sqrt{2}$ (as ABC is a 45:45:90 triangle). Hence, $\overline{PB}=10\sqrt{2}$. We use the Law of Cosines to find AB. \[AB^2=BP^2+AP^2-2ab\cos(APB)\] \[AB^2=100+200-2(10)(10\sqrt{2}\cos(135^\circ))\] \[AB^2=300+200\sqrt{2}\frac{1}{\sqrt{2}}\] \[AB^2=500\] Since $\triangle ABC$ is a right triangle, the area is $\frac{AB^2}{2}=\frac{500}{2}=\boxed{250}$.

~Kiran

See also

2023 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png