Difference between revisions of "2023 AMC 10B Problems/Problem 15"

(Solution)
(Solution)
Line 5: Line 5:
 
Consider 2,
 
Consider 2,
 
there are odd number of 2's in <math>2!\cdot3!\cdot4!\cdot5!...16!</math>  (We're not counting 3 2's in 8, 2 3's in 9, etc).
 
there are odd number of 2's in <math>2!\cdot3!\cdot4!\cdot5!...16!</math>  (We're not counting 3 2's in 8, 2 3's in 9, etc).
 +
 
There are even number of 3's in <math>2!\cdot3!\cdot4!\cdot5!...16!</math>
 
There are even number of 3's in <math>2!\cdot3!\cdot4!\cdot5!...16!</math>
 
...
 
...
Line 12: Line 13:
 
\begin{align*}
 
\begin{align*}
 
m \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 &\equiv m \cdot 2^8 \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8)\\
 
m \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 &\equiv m \cdot 2^8 \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8)\\
&\equiv m \cdot 2 \cdot 3 \cdot 5  \cdot (2 \cdot 3)  \cdot 7  \cdot (2  \cdot 2 \cdot 2)\\
+
&\equiv m \cdot 2 \cdot 3 \cdot (2 \cdot 2) \cdot 5  \cdot (2 \cdot 3)  \cdot 7  \cdot (2  \cdot 2 \cdot 2)\\
 
&\equiv m  \cdot 2 \cdot 5  \cdot 7\\
 
&\equiv m  \cdot 2 \cdot 5  \cdot 7\\
 
m &= 2 \cdot 5 \cdot 7 = 70
 
m &= 2 \cdot 5 \cdot 7 = 70
 
\end{align*}
 
\end{align*}
 
</cmath>
 
</cmath>

Revision as of 17:36, 15 November 2023

Problem

What is the least positive integer $m$ such that $m\cdot2!\cdot3!\cdot4!\cdot5!...16!$ is a perfect square?

Solution

Consider 2, there are odd number of 2's in $2!\cdot3!\cdot4!\cdot5!...16!$ (We're not counting 3 2's in 8, 2 3's in 9, etc).

There are even number of 3's in $2!\cdot3!\cdot4!\cdot5!...16!$ ...

So, original expression reduce to \begin{align*} m \cdot 2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 16 &\equiv m \cdot 2^8 \cdot (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8)\\ &\equiv m \cdot 2 \cdot 3 \cdot (2 \cdot 2) \cdot 5  \cdot (2 \cdot 3)  \cdot 7  \cdot (2  \cdot 2 \cdot 2)\\ &\equiv m  \cdot 2 \cdot 5  \cdot 7\\ m &= 2 \cdot 5 \cdot 7 = 70 \end{align*}