Difference between revisions of "2023 AMC 10B Problems/Problem 17"

(Solution)
(Solution 2 (find side lengths))
Line 87: Line 87:
  
 
Then, once we find the 3 edges being <math>a=1,b=2,</math> and <math>c=1/4</math>, we can plug in to the distance formula to get <math>9/4</math>.
 
Then, once we find the 3 edges being <math>a=1,b=2,</math> and <math>c=1/4</math>, we can plug in to the distance formula to get <math>9/4</math>.
 +
 +
 +
-HIA2020

Revision as of 16:54, 15 November 2023

Problem

A rectangular box 𝒫 has distinct edge lengths 𝑎, 𝑏, and 𝑐. The sum of the lengths of all 12 edges of 𝒫 is 13, the sum of the areas of all 6 faces of 𝒫 is $\dfrac{11}{2}$, and the volume of 𝒫 is $\dfrac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of 𝒫 ?

Solution 1

[asy] import geometry; pair A = (-3, 4); pair B = (-3, 5); pair C = (-1, 4); pair D = (-1, 5);   pair AA = (0, 0); pair BB = (0, 1); pair CC = (2, 0); pair DD = (2, 1);     draw(D--AA,dashed);  draw(A--B); draw(A--C); draw(B--D); draw(C--D);  draw(A--AA); draw(B--BB); draw(C--CC); draw(D--DD);  // Dotted vertices dot(A); dot(B); dot(C); dot(D);    dot(AA); dot(BB); dot(CC); dot(DD);  draw(AA--BB); draw(AA--CC); draw(BB--DD); draw(CC--DD);   label("a",midpoint(D--DD),E); label("b",midpoint(CC--DD),E); label("c",midpoint(AA--CC),S); [/asy] Let $a,b,$ and $c$ be the sides of the box, we get

\begin{align*}    4(a+b+c) &= 13\\ 2(ab+bc+ca) &= \dfrac{11}{2}\\ abc &= \dfrac{1}{2} \end{align*}


The diagonal of the box is

\begin{align*}    \sqrt{a^2+b^2+c^2}&=\sqrt{(a+b+c)^2-2(ab+bc+ca)}\\ &=\sqrt{(\dfrac{13}{4})^2-\dfrac{11}{2}}\\ &=\sqrt{\dfrac{169}{16}-\dfrac{88}{16}}\\ &=\sqrt{\dfrac{81}{16}}\\ &=\dfrac{9}{4} \end{align*}

~Technodoggo

Solution 2 (find side lengths)

Let $a,b,c$ be the edge lengths. $4(a+b+c)=13, a+b+c=13/4$ $2(ab+bc+ac)=11/2, ab+bc+ac=11/4$ $abc=1/2$

Then, you can notice that these look like results of Vieta's formula: $(x-a)(x-b)(x-c) = x^3-(a+b+c)x^2+(ab+bc+ac)x-abc = x^3-13/4x^2+11/4x-1/2$ Finding when this $= 0$ will give us the edge lengths. We can use RRT to find one of the roots: One is $x=1$, dividing gives $x^2-9/4x+1/2$. The other 2 roots are $2,1/4$

Then, once we find the 3 edges being $a=1,b=2,$ and $c=1/4$, we can plug in to the distance formula to get $9/4$.


-HIA2020