Difference between revisions of "2023 AMC 10B Problems/Problem 25"

Line 1: Line 1:
Did you think?
+
==Problem==
 +
A regular pentagon with area 1+\sqrt(5) is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
 +
 
 +
 
 +
==Solution 1==
 +
 
 +
<asy>
 +
unitsize(5cm);
 +
 
 +
// Define the vertices of the pentagons
 +
pair A, B, C, D, E;
 +
pair F, G, H, I, J;
 +
 
 +
// Calculate the vertices of the larger pentagon
 +
A = dir(90);
 +
B = dir(90 - 72);
 +
C = dir(90 - 2*72);
 +
D = dir(90 - 3*72);
 +
E = dir(90 - 4*72);
 +
 
 +
// Draw the larger pentagon
 +
draw(A--B--C--D--E--cycle);
 +
 
 +
pair O = (A+B+C+D+E)/5;
 +
pair AA,OO;
 +
real gap = 0.02;
 +
AA = A+(0,0);
 +
OO = O+(0,0);
 +
 
 +
draw(AA--OO, blue);
 +
 
 +
pair OOO, OAO;
 +
OOO = O+(gap,0);
 +
OAO = (O+A)/2 + (gap,0);
 +
 
 +
draw(OOO--OAO,green);
 +
dot(O);
 +
dot((O+A)/2);
 +
 
 +
label("$r_b$", (O+A)*.7, E,blue);
 +
label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green);
 +
label("$r_s$", O+(-0.175,0.2), E,pink);
 +
 
 +
 
 +
real scaleFactor = 1/1.618; // Adjust this value as needed
 +
// Rotate the smaller pentagon by 180 degrees
 +
F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180);
 +
G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180);
 +
H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180);
 +
I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180);
 +
J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180);
 +
 
 +
// Draw the smaller pentagon
 +
 
 +
draw(F--G--H--I--J--cycle,red);
 +
 
 +
draw(arc(O,(H+I)*.5*.6,H*.6));
 +
label("$36^\circ$",O+(+0.05,0.15),NW);
 +
draw(O--H,pink);
 +
</asy>
 +
 
 +
Let <math>r_b</math> and <math>r_s</math> be the circumradius of the big and smaller pentagon. Let <math>a_s</math> be the apothem of the smaller pentagon.
 +
 
 +
From the diagram:
 +
    \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\
 +
    a_s &= \dfrac{r_b}{2}\\
 +
    \text{Area of small pentagon} &= (\dfrac{r_s}{r_b})^2 \text{Area of big pentagon}\\
 +
    &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\
 +
    &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\
 +
    &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\
 +
    &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\
 +
    &=\dfrac{4}{\sqrt{5}+1} \\
 +
    &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\
 +
    &=\sqrt{5}-1
 +
 
 +
~Technodoggo

Revision as of 14:23, 15 November 2023

Problem

A regular pentagon with area 1+\sqrt(5) is printed on paper and cut out. All five vertices are folded to the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?


Solution 1

[asy] unitsize(5cm);  // Define the vertices of the pentagons pair A, B, C, D, E; pair F, G, H, I, J;  // Calculate the vertices of the larger pentagon A = dir(90); B = dir(90 - 72); C = dir(90 - 2*72); D = dir(90 - 3*72); E = dir(90 - 4*72);  // Draw the larger pentagon draw(A--B--C--D--E--cycle);  pair O = (A+B+C+D+E)/5; pair AA,OO; real gap = 0.02; AA = A+(0,0); OO = O+(0,0);  draw(AA--OO, blue);  pair OOO, OAO; OOO = O+(gap,0); OAO = (O+A)/2 + (gap,0);  draw(OOO--OAO,green); dot(O); dot((O+A)/2);  label("$r_b$", (O+A)*.7, E,blue); label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green); label("$r_s$", O+(-0.175,0.2), E,pink);   real scaleFactor = 1/1.618; // Adjust this value as needed // Rotate the smaller pentagon by 180 degrees F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180); G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180); H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180); I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180); J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180);  // Draw the smaller pentagon  draw(F--G--H--I--J--cycle,red);  draw(arc(O,(H+I)*.5*.6,H*.6)); label("$36^\circ$",O+(+0.05,0.15),NW); draw(O--H,pink); [/asy]

Let $r_b$ and $r_s$ be the circumradius of the big and smaller pentagon. Let $a_s$ be the apothem of the smaller pentagon.

From the diagram:

   \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\
   a_s &= \dfrac{r_b}{2}\\
   \text{Area of small pentagon} &= (\dfrac{r_s}{r_b})^2 \text{Area of big pentagon}\\
   &=(\dfrac{a_s}{\cos{36^\circ} r_b})^2 (1+\sqrt{5})\\
   &=(\dfrac{r_b}{\dfrac{\phi}{2} r_b})^2 (1+\sqrt{5})\\
   &=(\dfrac{1}{2 \dfrac{\phi}{2}})^2 (1+\sqrt{5})\\
   &=(\dfrac{2}{\sqrt{5}+1})^2 (1+\sqrt{5})\\
   &=\dfrac{4}{\sqrt{5}+1} \\
   &=\dfrac{4(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} \\
   &=\sqrt{5}-1

~Technodoggo