Difference between revisions of "2024 USAJMO Problems/Problem 1"

(Created page with "__TOC__ == Problem == Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=7</math> and <math>CD=8</math>. Points <math>P</math> and <math>Q</math> are selected on l...")
 
(Solution 3)
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
  
== Problem ==
+
==Problem==
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=7</math> and <math>CD=8</math>. Points <math>P</math> and <math>Q</math> are selected on line segment <math>AB</math> so that <math>AP=BQ=3</math>. Points <math>R</math> and <math>S</math> are selected on line segment <math>CD</math> so that <math>CR=DS=2</math>. Prove that <math>PQRS</math> is a quadrilateral.
+
 
 +
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB = 7</math> and <math>CD = 8</math>. Points <math>P</math> and <math>Q</math> are selected on segment <math>AB</math> such that <math>AP = BQ = 3</math>. Points <math>R</math> and <math>S</math> are selected on segment <math>CD</math> such that <math>CR = DS = 2</math>. Prove that <math>PQRS</math> is a cyclic quadrilateral.
 +
 
 +
==Solution 1==
 +
 
 +
First, let <math>E</math> and <math>F</math> be the midpoints of <math>AB</math> and <math>CD</math>, respectively. It is clear that <math>AE=BE=3.5</math>, <math>PE=QE=0.5</math>, <math>DF=CF=4</math>, and <math>SF=RF=2</math>. Also, let <math>O</math> be the circumcenter of <math>ABCD</math>.
 +
 
 +
<asy> /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
 +
import graph; size(12cm);
 +
real labelscalefactor = 0.5; /* changes label-to-point distance */
 +
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
 +
pen dotstyle = black; /* point style */
 +
real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11;  /* image dimensions */
 +
pen wrwrwr = rgb(0.38,0.38,0.38);
 +
/* draw figures */
 +
draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr);
 +
draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr);
 +
draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr);
 +
draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr);
 +
draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr);
 +
draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr);
 +
draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr);
 +
/* dots and labels */
 +
dot((2.92,-3.28),dotstyle);
 +
label("$O$", (2.43,-3.56), NE * labelscalefactor);
 +
dot((-2.52,-1.01),dotstyle);
 +
label("$A$", (-2.91,-0.91), NE * labelscalefactor);
 +
dot((3.46,2.59),linewidth(4pt) + dotstyle);
 +
label("$B$", (3.49,2.78), NE * labelscalefactor);
 +
dot((7.59,-6.88),dotstyle);
 +
label("$C$", (7.82,-7.24), NE * labelscalefactor);
 +
dot((-0.29,-8.22),linewidth(4pt) + dotstyle);
 +
label("$D$", (-0.53,-8.62), NE * labelscalefactor);
 +
dot((0.03,0.52),linewidth(4pt) + dotstyle);
 +
label("$P$", (-0.13,0.67), NE * labelscalefactor);
 +
dot((0.89,1.04),linewidth(4pt) + dotstyle);
 +
label("$Q$", (0.62,1.16), NE * labelscalefactor);
 +
dot((5.61,-7.22),linewidth(4pt) + dotstyle);
 +
label("$R$", (5.70,-7.05), NE * labelscalefactor);
 +
dot((1.67,-7.89),linewidth(4pt) + dotstyle);
 +
label("$S$", (1.75,-7.73), NE * labelscalefactor);
 +
dot((0.46,0.78),linewidth(4pt) + dotstyle);
 +
label("$E$", (0.26,0.93), NE * labelscalefactor);
 +
dot((3.64,-7.55),linewidth(4pt) + dotstyle);
 +
label("$F$", (3.73,-7.39), NE * labelscalefactor);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
/* end of picture */</asy>
 +
 +
By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that <math>OE\perp AB</math> and <math>OF\perp CD</math>. Since <math>E</math> and <math>F</math> are also bisectors of <math>PQ</math> and <math>RS</math>, respectively, if <math>PQRS</math> is indeed a cyclic quadrilateral, then its circumcenter is also at <math>O</math>. Thus, it suffices to show that <math>OP=OQ=OR=OS</math>.
 +
 
 +
Notice that <math>PE=QE</math>, <math>EO=EO</math>, and <math>\angle QEO=\angle PEO=90^\circ</math>. By SAS congruency, <math>\Delta QOE\cong\Delta POE\implies QO=PO</math>. Similarly, we find that <math>\Delta SOF\cong\Delta ROF</math> and <math>OS=OR</math>. We now need only to show that these two pairs are equal to each other.
 +
 
 +
Draw the segments connecting <math>O</math> to <math>B</math>, <math>Q</math>, <math>C</math>, and <math>R</math>.
 +
 
 +
<asy> /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
 +
import graph; size(12cm);
 +
real labelscalefactor = 0.5; /* changes label-to-point distance */
 +
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
 +
pen dotstyle = black; /* point style */
 +
real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11;  /* image dimensions */
 +
pen wrwrwr = rgb(0.38,0.38,0.38);
 +
/* draw figures */
 +
draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr);
 +
draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr);
 +
draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr);
 +
draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr);
 +
draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr);
 +
draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr);
 +
draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr);
 +
draw((0.46,0.78)--(2.92,-3.28), linewidth(2) + wrwrwr);
 +
draw((2.92,-3.28)--(3.64,-7.55), linewidth(2) + wrwrwr);
 +
draw((2.92,-3.28)--(7.59,-6.88), linewidth(2) + wrwrwr);
 +
draw((5.61,-7.22)--(2.92,-3.28), linewidth(2) + wrwrwr);
 +
draw((2.92,-3.28)--(3.46,2.59), linewidth(2) + wrwrwr);
 +
draw((2.92,-3.28)--(0.89,1.04), linewidth(2) + wrwrwr);
 +
/* dots and labels */
 +
dot((2.92,-3.28),dotstyle);
 +
label("$O$", (2.43,-3.56), NE * labelscalefactor);
 +
dot((-2.52,-1.01),dotstyle);
 +
label("$A$", (-2.91,-0.91), NE * labelscalefactor);
 +
dot((3.46,2.59),linewidth(1pt) + dotstyle);
 +
label("$B$", (3.49,2.78), NE * labelscalefactor);
 +
dot((7.59,-6.88),dotstyle);
 +
label("$C$", (7.82,-7.24), NE * labelscalefactor);
 +
dot((-0.29,-8.22),linewidth(1pt) + dotstyle);
 +
label("$D$", (-0.53,-8.62), NE * labelscalefactor);
 +
dot((0.03,0.52),linewidth(1pt) + dotstyle);
 +
label("$P$", (-0.13,0.67), NE * labelscalefactor);
 +
dot((0.89,1.04),linewidth(1pt) + dotstyle);
 +
label("$Q$", (0.62,1.16), NE * labelscalefactor);
 +
dot((5.61,-7.22),linewidth(1pt) + dotstyle);
 +
label("$R$", (5.70,-7.05), NE * labelscalefactor);
 +
dot((1.67,-7.89),linewidth(1pt) + dotstyle);
 +
label("$S$", (1.75,-7.73), NE * labelscalefactor);
 +
dot((0.46,0.78),linewidth(1pt) + dotstyle);
 +
label("$E$", (0.26,0.93), NE * labelscalefactor);
 +
dot((3.64,-7.55),linewidth(1pt) + dotstyle);
 +
label("$F$", (3.73,-7.39), NE * labelscalefactor);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
/* end of picture */</asy>
 +
 +
Also, let <math>r</math> be the circumradius of <math>ABCD</math>. This means that <math>AO=BO=CO=DO=r</math>. Recall that <math>\angle BEO=90^\circ</math> and <math>\angle CFO=90^\circ</math>. Notice the several right triangles in our figure.
 +
 
 +
Let us apply Pythagorean Theorem on <math>\Delta BEO</math>. We can see that <math>EO^2+EB^2=BO^2\implies EO^2+3.5^2=r^2\implies EO=\sqrt{r^2-12.25}.</math>
 +
 
 +
Let us again apply Pythagorean Theorem on <math>\Delta QEO</math>. We can see that <math>QE^2+EO^2=QO^2\implies0.5^2+r^2-12.25=QO^2\implies QO=\sqrt{r^2-12}.</math>
 +
 
 +
Let us apply Pythagorean Theorem on <math>\Delta CFO</math>. We get <math>CF^2+OF^2=OC^2\implies4^2+OF^2=r^2\implies OF=\sqrt{r^2-16}</math>.
 +
 
 +
We finally apply Pythagorean Theorem on <math>\Delta RFO</math>. This becomes <math>OF^2+FR^2=OR^2\implies r^2-16+2^2=OR^2\implies OR=\sqrt{r^2-12}</math>.
 +
 
 +
This is the same expression as we got for <math>QO</math>. Thus, <math>OQ=OR</math>, and recalling that <math>OQ=OP</math> and <math>OR=OS</math>, we have shown that <math>OP=OQ=OR=OS</math>. We are done. QED
 +
 
 +
~Technodoggo
 +
 
 +
==Solution 2==
 +
 
 +
We can consider two cases: <math>AB \parallel CD</math> or <math>AB \nparallel CD.</math> The first case is trivial, as <math>PQ \parallel RS</math> and we are done due to symmetry. For the second case, WLOG, assume that <math>A</math> and <math>C</math> are located on <math>XB</math> and <math>XD</math> respectively. Extend <math>AB</math> and <math>CD</math> to a point <math>X,</math> and by Power of a Point, we have <cmath>XA\cdot XB = XC \cdot XD,</cmath> which may be written as <cmath>XA \cdot (XA+7) = XC \cdot (XC+8),</cmath> or <cmath>XA^2 + 7XA = XC^2 + 8XC.</cmath> We can translate this to <cmath>XA^2 + 7XA +12 = XC^2 + 8XC +12,</cmath> so <cmath>XP\cdot XQ = (XA+3)(XA+4)=(XC+2)(XC+6)= XR\cdot XS,</cmath> and therefore by the Converse of Power of a Point <math>PQRS</math> is cyclic, and we are done.
 +
 
 +
- [https://artofproblemsolving.com/wiki/index.php/User:Spectraldragon8 spectraldragon8]
 +
 
 +
==Solution 3==
 +
 
 +
All 4 corners of <math>PQRS</math> have equal power of a point (<math>12</math>) with respect to the circle <math>(ABCD)</math>, with center <math>O</math>.
 +
 
 +
Draw diameters (of length <math>AQ</math>) of circle <math>(ABCD)</math> through <math>Q</math> and <math>S</math>, with length <math>A</math>.  Let <math>q</math> be the distance from <math>Q</math> to the circle along a diameter, and  likewise <math>s</math> be distance from <math>S</math> to the circle.
 +
 
 +
Then <math>q(AQ-q) = s(AQ-s) = 12</math> and <math>q,s < AQ/2</math> (radius). Therefore, <math>q=s</math> and <math>AQ/2 -q = AQ/2 -s</math>. But <math>AQ-q=OQ</math>, <math>AQ-s=OS</math>, <math>OQ = OP</math> and <math>OS = OR</math> by symmetry around the perpendicular bisectors of <math>PQ</math> and <math>RS</math>, so <math>P,Q,R,S</math> are all equidistant from <math>O</math>, forming a circumcircle around <math>PQRS</math>.
 +
 
 +
-BraveCobra22aops and oinava
 +
 
 +
 
 +
==Solution 4 (Coord Bash)==
 +
[Will add when have time]
 +
~KevinChen_Yay
 +
 
 +
==See Also==
 +
{{USAJMO newbox|year=2024|before=First Question|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 09:38, 24 April 2024

Problem

Let $ABCD$ be a cyclic quadrilateral with $AB = 7$ and $CD = 8$. Points $P$ and $Q$ are selected on segment $AB$ such that $AP = BQ = 3$. Points $R$ and $S$ are selected on segment $CD$ such that $CR = DS = 2$. Prove that $PQRS$ is a cyclic quadrilateral.

Solution 1

First, let $E$ and $F$ be the midpoints of $AB$ and $CD$, respectively. It is clear that $AE=BE=3.5$, $PE=QE=0.5$, $DF=CF=4$, and $SF=RF=2$. Also, let $O$ be the circumcenter of $ABCD$.

[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11;  /* image dimensions */ pen wrwrwr = rgb(0.38,0.38,0.38);   /* draw figures */ draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr);  draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr);  draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr);  draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr);  draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr);  draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr);  draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr);   /* dots and labels */ dot((2.92,-3.28),dotstyle);  label("$O$", (2.43,-3.56), NE * labelscalefactor);  dot((-2.52,-1.01),dotstyle);  label("$A$", (-2.91,-0.91), NE * labelscalefactor);  dot((3.46,2.59),linewidth(4pt) + dotstyle);  label("$B$", (3.49,2.78), NE * labelscalefactor);  dot((7.59,-6.88),dotstyle);  label("$C$", (7.82,-7.24), NE * labelscalefactor);  dot((-0.29,-8.22),linewidth(4pt) + dotstyle);  label("$D$", (-0.53,-8.62), NE * labelscalefactor);  dot((0.03,0.52),linewidth(4pt) + dotstyle);  label("$P$", (-0.13,0.67), NE * labelscalefactor);  dot((0.89,1.04),linewidth(4pt) + dotstyle);  label("$Q$", (0.62,1.16), NE * labelscalefactor);  dot((5.61,-7.22),linewidth(4pt) + dotstyle);  label("$R$", (5.70,-7.05), NE * labelscalefactor);  dot((1.67,-7.89),linewidth(4pt) + dotstyle);  label("$S$", (1.75,-7.73), NE * labelscalefactor);  dot((0.46,0.78),linewidth(4pt) + dotstyle);  label("$E$", (0.26,0.93), NE * labelscalefactor);  dot((3.64,-7.55),linewidth(4pt) + dotstyle);  label("$F$", (3.73,-7.39), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */[/asy]

By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that $OE\perp AB$ and $OF\perp CD$. Since $E$ and $F$ are also bisectors of $PQ$ and $RS$, respectively, if $PQRS$ is indeed a cyclic quadrilateral, then its circumcenter is also at $O$. Thus, it suffices to show that $OP=OQ=OR=OS$.

Notice that $PE=QE$, $EO=EO$, and $\angle QEO=\angle PEO=90^\circ$. By SAS congruency, $\Delta QOE\cong\Delta POE\implies QO=PO$. Similarly, we find that $\Delta SOF\cong\Delta ROF$ and $OS=OR$. We now need only to show that these two pairs are equal to each other.

Draw the segments connecting $O$ to $B$, $Q$, $C$, and $R$.

[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11;  /* image dimensions */ pen wrwrwr = rgb(0.38,0.38,0.38);   /* draw figures */ draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr);  draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr);  draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr);  draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr);  draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr);  draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr);  draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr);  draw((0.46,0.78)--(2.92,-3.28), linewidth(2) + wrwrwr);  draw((2.92,-3.28)--(3.64,-7.55), linewidth(2) + wrwrwr);  draw((2.92,-3.28)--(7.59,-6.88), linewidth(2) + wrwrwr);  draw((5.61,-7.22)--(2.92,-3.28), linewidth(2) + wrwrwr);  draw((2.92,-3.28)--(3.46,2.59), linewidth(2) + wrwrwr);  draw((2.92,-3.28)--(0.89,1.04), linewidth(2) + wrwrwr);   /* dots and labels */ dot((2.92,-3.28),dotstyle);  label("$O$", (2.43,-3.56), NE * labelscalefactor);  dot((-2.52,-1.01),dotstyle);  label("$A$", (-2.91,-0.91), NE * labelscalefactor);  dot((3.46,2.59),linewidth(1pt) + dotstyle);  label("$B$", (3.49,2.78), NE * labelscalefactor);  dot((7.59,-6.88),dotstyle);  label("$C$", (7.82,-7.24), NE * labelscalefactor);  dot((-0.29,-8.22),linewidth(1pt) + dotstyle);  label("$D$", (-0.53,-8.62), NE * labelscalefactor);  dot((0.03,0.52),linewidth(1pt) + dotstyle);  label("$P$", (-0.13,0.67), NE * labelscalefactor);  dot((0.89,1.04),linewidth(1pt) + dotstyle);  label("$Q$", (0.62,1.16), NE * labelscalefactor);  dot((5.61,-7.22),linewidth(1pt) + dotstyle);  label("$R$", (5.70,-7.05), NE * labelscalefactor);  dot((1.67,-7.89),linewidth(1pt) + dotstyle);  label("$S$", (1.75,-7.73), NE * labelscalefactor);  dot((0.46,0.78),linewidth(1pt) + dotstyle);  label("$E$", (0.26,0.93), NE * labelscalefactor);  dot((3.64,-7.55),linewidth(1pt) + dotstyle);  label("$F$", (3.73,-7.39), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */[/asy]

Also, let $r$ be the circumradius of $ABCD$. This means that $AO=BO=CO=DO=r$. Recall that $\angle BEO=90^\circ$ and $\angle CFO=90^\circ$. Notice the several right triangles in our figure.

Let us apply Pythagorean Theorem on $\Delta BEO$. We can see that $EO^2+EB^2=BO^2\implies EO^2+3.5^2=r^2\implies EO=\sqrt{r^2-12.25}.$

Let us again apply Pythagorean Theorem on $\Delta QEO$. We can see that $QE^2+EO^2=QO^2\implies0.5^2+r^2-12.25=QO^2\implies QO=\sqrt{r^2-12}.$

Let us apply Pythagorean Theorem on $\Delta CFO$. We get $CF^2+OF^2=OC^2\implies4^2+OF^2=r^2\implies OF=\sqrt{r^2-16}$.

We finally apply Pythagorean Theorem on $\Delta RFO$. This becomes $OF^2+FR^2=OR^2\implies r^2-16+2^2=OR^2\implies OR=\sqrt{r^2-12}$.

This is the same expression as we got for $QO$. Thus, $OQ=OR$, and recalling that $OQ=OP$ and $OR=OS$, we have shown that $OP=OQ=OR=OS$. We are done. QED

~Technodoggo

Solution 2

We can consider two cases: $AB \parallel CD$ or $AB \nparallel CD.$ The first case is trivial, as $PQ \parallel RS$ and we are done due to symmetry. For the second case, WLOG, assume that $A$ and $C$ are located on $XB$ and $XD$ respectively. Extend $AB$ and $CD$ to a point $X,$ and by Power of a Point, we have \[XA\cdot XB = XC \cdot XD,\] which may be written as \[XA \cdot (XA+7) = XC \cdot (XC+8),\] or \[XA^2 + 7XA = XC^2 + 8XC.\] We can translate this to \[XA^2 + 7XA +12 = XC^2 + 8XC +12,\] so \[XP\cdot XQ = (XA+3)(XA+4)=(XC+2)(XC+6)= XR\cdot XS,\] and therefore by the Converse of Power of a Point $PQRS$ is cyclic, and we are done.

- spectraldragon8

Solution 3

All 4 corners of $PQRS$ have equal power of a point ($12$) with respect to the circle $(ABCD)$, with center $O$.

Draw diameters (of length $AQ$) of circle $(ABCD)$ through $Q$ and $S$, with length $A$. Let $q$ be the distance from $Q$ to the circle along a diameter, and likewise $s$ be distance from $S$ to the circle.

Then $q(AQ-q) = s(AQ-s) = 12$ and $q,s < AQ/2$ (radius). Therefore, $q=s$ and $AQ/2 -q = AQ/2 -s$. But $AQ-q=OQ$, $AQ-s=OS$, $OQ = OP$ and $OS = OR$ by symmetry around the perpendicular bisectors of $PQ$ and $RS$, so $P,Q,R,S$ are all equidistant from $O$, forming a circumcircle around $PQRS$.

-BraveCobra22aops and oinava


Solution 4 (Coord Bash)

[Will add when have time] ~KevinChen_Yay

See Also

2024 USAJMO (ProblemsResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png