Difference between revisions of "AoPS Wiki talk:Problem of the Day/June 21, 2011"

(Solution)
(latex errors)
Line 2: Line 2:
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
 
==Solution==
 
==Solution==
(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26
+
<math>(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26</math>.  Hence <math>(2x+3y)^2 \le 26</math> or <math>2x+3y = \sqrt{26}</math>.
Hence (2x+3y)^2 <= 26 or 2x+3y = sqrt(26).
+
If <math>3x-2y=0</math> and <math>2x+3y=\sqrt{26}</math>, then <math>2x+3y</math> attains this maximum value on the circle <math>x^2+y^2=2</math>.
If 3x-2y=0 and 2x+3y=sqrt(26), then 2x+3y attains this maximum value on the circle x^2+y^2=2.
 

Revision as of 20:37, 20 June 2011

Problem

AoPSWiki:Problem of the Day/June 21, 2011

Solution

$(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26$. Hence $(2x+3y)^2 \le 26$ or $2x+3y = \sqrt{26}$. If $3x-2y=0$ and $2x+3y=\sqrt{26}$, then $2x+3y$ attains this maximum value on the circle $x^2+y^2=2$.