Difference between revisions of "Ascending chain condition"

m
(Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
Let <math>S</math> be a [[partially ordered set]].  We say that <math>S</math> satisfies the '''ascending chain condition''' ('''ACC''') if every ascending chain
 
<cmath> x_0 \leqslant x_1 \leqslant x_2 \leqslant \dotsc </cmath>
 
eventually stabilizes; that is, there is some <math>N\ge 0</math> such that
 
<math>x_n = x_N</math> for all <math>n\ge N</math>.
 
  
Similarly, if every descending chain
 
<cmath> x_0 \geqslant x_1 \geqslant x_2 \geqslant \dotsc </cmath>
 
stabilizes, we say that <math>S</math> satisfies the '''descending chain condition''' ('''DCC''').  A set <math>S</math> with an ordering <math>\leqslant</math> satisfies ACC if and only if
 
its opposite ordering satisfies DCC.
 
 
Every [[finite]] ordered set necessarily satisfies both ACC and
 
DCC.
 
 
Let <math>A</math> be a [[ring]], and let <math>M</math> be an <math>A</math>-module.  If the set
 
of sub-modules of <math>M</math> with the ordering of <math>M</math> satifies ACC, we
 
say that <math>M</math> is [[Noetherian]].  If this set satisfies DCC, we say
 
that <math>M</math> is [[Artinian]].
 
 
'''Theorem.''' A partially ordered set <math>S</math> satisfies the ascending
 
chain condition if and only if every subset of <math>S</math> has a
 
[[maximal element]].
 
 
''Proof.''  First, suppose that every subset of <math>S</math> has a maximal
 
element.  Then every ascending chain in <math>S</math> has a maximal element,
 
so <math>S</math> satisfies ACC.
 
 
Now, suppose that some subset of <math>S</math> has no maximal element.  Then
 
we can recursively define elements <math>x_0, x_1, \dotsc</math> such that
 
<math>x_{n+1} > x_n</math>, for all <math>n\ge 0</math>.  This sequence constitutes
 
an ascending chain that does not stabilize, so <math>S</math> does not
 
satisfy ACC.  <math>\blacksquare</math>
 
 
 
{{stub}}
 
 
== See also ==
 
 
* [[Noetherian]]
 
* [[Artinian]]
 
* [[Partially ordered set]]
 
* [[Zorn's Lemma]]<!-- haha-->
 
 
[[Category:Set theory]]
 
[[Category:Ring theory]]
 

Revision as of 17:57, 15 December 2018