Difference between revisions of "Bezout's Lemma"

(New page: '''Bezout's Lemma''' states that if two integers <math>x</math> and <math>y</math> satisfy <math>gcd(x,y)=1</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> suc...)
 
Line 1: Line 1:
'''Bezout's Lemma''' states that if two integers <math>x</math> and <math>y</math> satisfy <math>gcd(x,y)=1</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=1</math>.
+
'''Bezout's Lemma''' states that if two integers <math>x</math> and <math>y</math> satisfy <math>gcd(x,y)=1</math>, then there exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=1</math>. In other words, there exists a linear combination of <math>x</math> and <math>y</math> equal to <math>1</math>.
  
 
==Proof==
 
==Proof==
{{incomplete|proof}}
+
Since <math>gcd(x,y)=1</math>, <math>lcm(x,y)=xy</math>. So <math>\alpha=y</math> is the first time that <math>x\alpha\equiv 0\bmod{y}</math>, and it is there that the modular residues begin repeating. Now if for all integers <math>0<a,b<n</math>, we have that <math>xa\neq xb\bmod{y}</math>, then one of those <math>n-1</math> integers must be 1 from the [[Pigeonhole Principle]]. Assume for contradiction that <math>xa\equiv xb\bmod{y}</math>. Thus it repeats, and one of <math>a</math> or <math>b</math> must be <math>\geq n</math>, which is opposite of what we had. Thus there exists an <math>\alpha</math> such that <math>x\alpha\equiv 1\bmod{y}</math>, and the same proof holds for <math>\beta</math>.
 +
 
 +
Since <math>x\alpha +y\beta</math> is equivalent to 1 mod x and mod y, and <math>gcd(x,y)=1</math>, <math>x\alpha +y\beta \equiv 1\bmod{xy}</math>. Lets say that <math>x\alpha+y\beta=xy\gamma +1</math> for some integer <math>\gamma</math>. We can subtract <math>y\gamma</math> from <math>\alpha</math> and plug that in to get
 +
 
 +
<math>x(\alpha-y\gamma)+y\beta=xy\gamma+1-xy\gamma=1</math>.
 +
 
 +
Thus there does exist integers <math>\alpha</math> and <math>\beta</math> such that <math>x\alpha+y\beta=1</math>.
  
 
==See also==
 
==See also==
 
[[Category:Number Theory]]
 
[[Category:Number Theory]]
 
{{stub}}
 
{{stub}}

Revision as of 10:03, 16 August 2008

Bezout's Lemma states that if two integers $x$ and $y$ satisfy $gcd(x,y)=1$, then there exist integers $\alpha$ and $\beta$ such that $x\alpha+y\beta=1$. In other words, there exists a linear combination of $x$ and $y$ equal to $1$.

Proof

Since $gcd(x,y)=1$, $lcm(x,y)=xy$. So $\alpha=y$ is the first time that $x\alpha\equiv 0\bmod{y}$, and it is there that the modular residues begin repeating. Now if for all integers $0<a,b<n$, we have that $xa\neq xb\bmod{y}$, then one of those $n-1$ integers must be 1 from the Pigeonhole Principle. Assume for contradiction that $xa\equiv xb\bmod{y}$. Thus it repeats, and one of $a$ or $b$ must be $\geq n$, which is opposite of what we had. Thus there exists an $\alpha$ such that $x\alpha\equiv 1\bmod{y}$, and the same proof holds for $\beta$.

Since $x\alpha +y\beta$ is equivalent to 1 mod x and mod y, and $gcd(x,y)=1$, $x\alpha +y\beta \equiv 1\bmod{xy}$. Lets say that $x\alpha+y\beta=xy\gamma +1$ for some integer $\gamma$. We can subtract $y\gamma$ from $\alpha$ and plug that in to get

$x(\alpha-y\gamma)+y\beta=xy\gamma+1-xy\gamma=1$.

Thus there does exist integers $\alpha$ and $\beta$ such that $x\alpha+y\beta=1$.

See also

This article is a stub. Help us out by expanding it.