Bisector

Revision as of 13:41, 8 December 2023 by Vvsss (talk | contribs) (Division of bisector)

Division of bisector

Bisector division.png

Let a triangle $\triangle ABC, BC = a, AC = b, AB = c$ be given.

Let $AA', BB',$ and $CC'$ be the bisectors of $\triangle ABC.$

he segments $BB'$ and $A'C'$ meet at point $D.$ Find \[\frac {BI}{BB'}, \frac {DA'}{DC'}, \frac {BD}{BB'}.\]

Solution

\[\frac {BA'}{CA'} = \frac {BA}{CA} = \frac {c}{b}, BA' + CA' = BC = a \implies BA' = \frac {a \cdot c}{b+c}.\]

Similarly $BC' = \frac {a \cdot c}{a+b},  B'C = \frac {a \cdot b}{a+b}.$ \[\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c}.\]

\[\frac {DA'}{DC'} = \frac {BA'}{BC'} =  \frac {a+ b}{b +c}.\]

Denote $\angle ABC = 2 \beta.$ Bisector $BB' = 2 \frac {a \cdot c}{a + c} \cos \beta.$

Bisector $BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies$ \[\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.\] vladimir.shelomovskii@gmail.com, vvsss

Proportions for bisectors

The bisectors $AE$ and $CD$ of a triangle ABC with $\angle B = 60^\circ$ meet at point $I.$

Prove $\frac {CD}{AE} = \frac {BC}{AB}, DI = IE.$

Proof

Denote the angles $A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.$ $\angle AIE =  180^\circ - \alpha - \gamma =  90^\circ + \beta = 120^\circ \implies B, D, I,$ and $E$ are concyclic. \[\angle BEA = \angle BEI = \angle ADC.\] The area of the $\triangle ABC$ is \[[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies \frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.\] \[\frac {DI}{IE} = \frac {DI}{DC} \cdot  \frac {AE}{IE}\cdot  \frac {DC}{AI}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.\] vladimir.shelomovskii@gmail.com, vvsss