Revision as of 21:55, 20 August 2008 by Temperal (talk | contribs) (Examples: repipe link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Closure is a property of an abstract algebraic structure, such as a set, group, ring, or field


An algebraic structure $\mathbb{S}$ is said to have closure in a binary operation $\times$ if for any $a,b\in \mathbb{S}$, $a\times b\in \mathbb{S}$. In words, when any two members of $\mathbb{S}$ are combined using the operation, the result also is a member of $\mathbb{S}$.


See Also

Invalid username
Login to AoPS