Difference between revisions of "DVI exam"

(2022 222 problem 7)
(2022 221 problem 7)
Line 1: Line 1:
 
==2022 221 problem 7==  
 
==2022 221 problem 7==  
The volume of a triangular prism <math>ABCA'B'C'</math> with base <math>ABC</math> and side edges <math>AA', BB', CC'</math> is equal to <math>72.</math> Find the volume of the tetrahedron <math>DEFG,</math> where <math>D</math> is the center of the face <math>ABC'A', E</math> is the point of intersection of the medians of <math>\triangle A'B'C', F</math> is the midpoint of the edge <math>AC</math> and <math>G</math> is the middle of the edge <math>BC.</math>
+
The volume of a triangular prism <math>ABCA'B'C'</math> with base <math>ABC</math> and side edges <math>AA', BB', CC'</math> is equal to <math>72.</math> Find the volume of the tetrahedron <math>DEFG,</math> where <math>D</math> is the centroid of the face <math>ABC'A', E</math> is the point of intersection of the medians of <math>\triangle A'B'C', F</math> is the midpoint of the edge <math>AC</math> and <math>G</math> is the midpoint of the edge <math>BC.</math>
  
Solution
+
<i><b>Solution</b></i>
  
 +
Let us consider the uniform triangular prism <math>ABCA'B'C'.</math> Let <math>M</math> be the midpoint of <math>AB, M'</math> be the midpoint of <math>A'B', K</math> be the midpoint of <math>CM, L</math> be the midpoint of <math>C'M'.</math>
 +
 +
The area <math>[KED]</math> of <math>\triangle KED</math> in the sum with the areas of triangles <math>[KEL], [EDM'], [KDM]</math> is half the area of rectangle <math>CC'M'M,</math> so
 +
<cmath> \frac {[KED]}{[CC'M'M]} = \frac {1}{2} - \frac {1}{12}-\frac {1}{8} = \frac {5}{24}.</cmath>
 +
<cmath>FG \perp ED, 2 FG = AB.</cmath> Denote the distance between these lines <math>X.</math> The volume of the tetrahedron is <math>U = \frac {ED \cdot X \cdot FG}{6}.</math>
 +
<cmath>\frac {ED \cdot X}{2} = \frac {5}{24} \cdot CC' \cdot CM \implies U =\frac{5}{24 \cdot 3} \cdot CC' \cdot CM \cdot FG.</cmath>
 +
The volume of the prism is <math>V = \frac{CM \cdot AB}{2} \cdot \frac{CC'}{3} = 72.</math>
 +
<cmath>\frac {U}{V} = \frac {\frac {5}{72} CC' \cdot CM \cdot FG}{\frac{1}{3} CM \cdot FG \cdot CC'} = \frac {5}{24} \implies U = 15.</cmath>
 +
 +
An arbitrary prism is obtained from a regular one as a result of an affine transformation, all points on the tetrahedron are defined affinely, which means that the volume ratio will be preserved.
 +
 +
<i><b>Answer: 15.</b></i>
  
 
==2022 222 problem 7==
 
==2022 222 problem 7==

Revision as of 05:38, 28 January 2024

2022 221 problem 7

The volume of a triangular prism $ABCA'B'C'$ with base $ABC$ and side edges $AA', BB', CC'$ is equal to $72.$ Find the volume of the tetrahedron $DEFG,$ where $D$ is the centroid of the face $ABC'A', E$ is the point of intersection of the medians of $\triangle A'B'C', F$ is the midpoint of the edge $AC$ and $G$ is the midpoint of the edge $BC.$

Solution

Let us consider the uniform triangular prism $ABCA'B'C'.$ Let $M$ be the midpoint of $AB, M'$ be the midpoint of $A'B', K$ be the midpoint of $CM, L$ be the midpoint of $C'M'.$

The area $[KED]$ of $\triangle KED$ in the sum with the areas of triangles $[KEL], [EDM'], [KDM]$ is half the area of rectangle $CC'M'M,$ so \[\frac {[KED]}{[CC'M'M]} = \frac {1}{2} - \frac {1}{12}-\frac {1}{8} = \frac {5}{24}.\] \[FG \perp ED, 2 FG = AB.\] Denote the distance between these lines $X.$ The volume of the tetrahedron is $U = \frac {ED \cdot X \cdot FG}{6}.$ \[\frac {ED \cdot X}{2} = \frac {5}{24} \cdot CC' \cdot CM \implies U =\frac{5}{24 \cdot 3} \cdot CC' \cdot CM \cdot FG.\] The volume of the prism is $V = \frac{CM \cdot AB}{2} \cdot \frac{CC'}{3} = 72.$ \[\frac {U}{V} = \frac {\frac {5}{72} CC' \cdot CM \cdot FG}{\frac{1}{3} CM \cdot FG \cdot CC'} = \frac {5}{24} \implies U = 15.\]

An arbitrary prism is obtained from a regular one as a result of an affine transformation, all points on the tetrahedron are defined affinely, which means that the volume ratio will be preserved.

Answer: 15.

2022 222 problem 7

MSU 2022 2 7.png

\[r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},\] \[AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha},\] \[AM + BM = AB \implies\] \[\tan \alpha + \frac {1}{\tan \alpha} = 2 \sqrt {2} \implies \tan \alpha = \sqrt {2} - 1 \implies \tan 2 \alpha = 1 \implies 2 \alpha = \frac {\pi}{4}.\]