Difference between revisions of "Divisor"

m
Line 1: Line 1:
==Definition==
+
A [[natural number]] <math>\displaystyle{d}</math> is called a '''divisor''' of a natural number <math>\displaystyle{n}</math> if there is a natural number <math>\displaystyle{k}</math> such that <math>n=kd</math> or, in other words, if <math>\displaystyle\frac nd</math> is also a natural number (i.e <math>d</math> divides <math>n</math>). See [[Divisibility]] for more information.
Any [[natural number]] <math>\displaystyle{d}</math> is called a divisor of a natural number <math>\displaystyle{n}</math> if there is a natural number <math>\displaystyle{k}</math> such that <math>n=kd</math> or, in other words, if <math>\displaystyle\frac nd</math> is also a natural number (i.e <math>d</math> divides <math>n</math>). See [[Divisibility]] for more information.
 
  
 
== Notation==
 
== Notation==

Revision as of 09:36, 11 August 2006

A natural number $\displaystyle{d}$ is called a divisor of a natural number $\displaystyle{n}$ if there is a natural number $\displaystyle{k}$ such that $n=kd$ or, in other words, if $\displaystyle\frac nd$ is also a natural number (i.e $d$ divides $n$). See Divisibility for more information.

Notation

A common notation to indicate a number is a divisor of another is $n|k$. This means that $n$ divides $k$.


See main article, Counting divisors. If $n=p_1^{\alpha_1}\cdot\dots\cdot p_n^{\alpha_n}$ is the prime factorization of $\displaystyle{n}$, then the number $d(n)$ of different divisors of $n$ is given by the formula $d(n)=(\alpha_1+1)\cdot\dots\cdot(\alpha_n+1)$. It is often useful to know that this expression grows slower than any positive power of $\displaystyle{n}$ as $\displaystyle n\to\infty$. Another useful idea is that $d(n)$ is odd if and only if $\displaystyle{n}$ is a perfect square.

Useful formulae

See also